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Synopsis

A binding isotherm for ligands on multidimensional lattices has been calculated in the Bethe
approximation. In this lattice model, a single bound ligand is assumed to occupy a contiguous
sequence of lattice sites in all possible configurations; interactions between neighboring bound
ligands are included. This lattice model is equivalent to one used for treating polymer so-
lutions; a configurational entropy of athermal polymer solutions has been utilized directly
to represent bound ligands. Binding isotherms are examined for their dependences on lattice
coordination numbers and the number of sites occupied by a single bound ligand. Critical
conditions for phase transitions in single-ligand-species systems are also presented. The
binding isotherm reported here can be applied to a wide variety of binding phenomena; it is
exact for one-dimensional cases, i.e., it reduces to the binding isotherm of McGhee and von
Hippel [(1974) J. Mol. Biol. 86, 469-489] and should serve as a good approximation for
higher-dimensional binding phenomena.

INTRODUCTION

Ligand-site binding phenomena widely observed in a variety of biological
systems have stimulated the development of theories to analyze binding
data in order to study underlying mechanisms. Since Scatchard! initially
tried to analyze binding data by a graphic method subsequently termed
Scatchard plots, there have been many attempts to extend theories and
to apply them to particular phenomena. The simplest case in which a li-
gand occupies a single site with no interaction between bound ligands is
well known as Langmuir adsorption theory. Generally, systems of mole-
cules bound on an array of sites represented by regular arrangements of
molecules of different species are often referred to as lattice gases. Lattice
gases are equivalent to spin systems in magnetic fields, the so-called Ising
model, with well-known extensions to helix—coil transitions of macromol-
ecules.2 Consequently, one-to-one binding cases have been examined in
detail for any dimensional lattice. However, the range of ligand binding
situations encompassed in biological systems is extremely broad. Ligands
can range in size from atomic ions to protein molecules; general cases of
single-ligand to multiple-site binding should be treated. Most theories
that treat single-ligand binding to multiple sites are limited to ligand
binding on a one-dimensional lattice such as ligand binding on linear
polymers.3-® However, there are many ligand-binding biological systems
whose proper representation should not be one-dimensional lattices but
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rather two- or three-dimensional lattices. For two-dimensional lattices,
special cases such as adsorption of monovalent and bivalent cations by
membranes? and the binding of flexible ligands to the surface of proteins
and other macromolecules!®12 have been discussed; interligand interactions
were not taken into account in either case. Another typical example of
high-dimensional systems would be ligand binding to cell surface recep-
tors!314; although in this case receptors might be mobile rather than rigidly
fixed on the cell surface, lattice models should be a good approximation
even for such fluidlike systems, as exemplified by the success of lattice
models of solutions.!® Here we develop a lattice theory applicable to
binding phenomena manifested by biological systems of arbitrary dimen-
sionality.

The theories of polymer solution lattice models!5 already developed can
be modified easily to calculate a binding isotherm for single ligand to
multiple site binding on multidimensional lattices. In the lattice model
treated here for ligand binding, a single bound ligand is assumed to be
represented by a flexible chain that occupies a contiguous sequence of sites
on a multidimensional lattice. Also, interactions between nearest-neighbor
sites are taken into account; the interaction energies depend on whether
those sites are bound to ligands or not. With these assumptions, the lattice
model for ligand binding becomes equivalent to lattice models for polymer
solutions; solvent molecules and linear polymers will correspond to unoc-
cupied sites and ligands bound to multiple sites, respectively. We report
a binding isotherm calculated by using a partition function! for polymer
solutions based on the Bethe approximation. The effects of the coordi-
nation number of lattices and the number of sites occupied by a bound li-
gand on the binding isotherm are examined, as well as the critical condition
for phase transitions in multidimensional lattices. The binding isotherm
reported here is general and should be widely applicable to a variety of
binding phenomena.

The Bethe approximation is well known as a higher-order representation
of the Bragg-Williams or Weiss mean-field approximation. This ap-
proximation is exact for Bethe lattices that have no loop of lattice points
and would be a good approximation for multidimensional binding phe-
nomena. Here it should be noted that a one-dimensional lattice is a special
case of Bethe lattices for which the Bethe approximation gives an exact
solution.

BASIC THEORY

The grand canonical partition function for bound ligands is
2= 2 1)z (1)
INg \i=1

for multiligand species systems, where ); is the absolute activity of the ith
ligand species and Z(N;{N}) is a canonical partition function for a par-
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ticular set of N, which specifies the number of bound ligands of the {th
species. N is the total number of sites. In the product over i, the index
¢ takes values from 1 to the number of ligand species. The most probable
number of bound ligands, N;, which corresponds to the dominant term in
the summation of the above equation, satisfies the familiar thermodynamic
relation:

0In Z(N;{NF)
ON

These N; are thermodynamic quantities observed as the number of bound
ligands for a particular set of absolute activities. In alarge system, i.e., for
large N, N; approaches the average of N;. Subsequently, the superscript
* will be omitted.

From the equalities of chemical potentials between free and bound li-
gands, an intrinsic binding constant, K9, for jth ligand species is related
to Aj as

In }\j + 0 (2)

K?N; = }\jZ(N;{Ngle =1, N;;fj = 0})/N (3)

where N/ is the concentration of free ligands of the jth species. Then, a
binding isotherm can be represented by eliminating A; from Egs. (2) and

(3):

In KON = — 0In Z(N;IN )

oN;

+ an(N;{Ngle =1,N¢xj=0) —InN
(4)

Partition Function, Z, in the Bethe Approximation

Lattice models can be used to represent more or less regular arrange-
ments of sites, each of which can bind a ligand, and to take account of site
exclusion by bound ligands and interactions between sites; each lattice point
is identified as one site. The site exclusion of bound ligands has been
simplified while retaining the characteristics of ligand binding in order to
get the analytical forms of binding isotherms rather than taking account
of complicated configurations of bound ligands.10-12 A single bound ligand
of the ith species is simply assumed to occupy a contiguous sequence of n;
sites or lattice points in all possible configurations. In other words, a bound
ligand is assumed to be like a flexible linear chain consisting of n; units each
of which occupies a site. Also, interactions are assumed to occur only be-
tween nearest-neighbor sites. These assumptions are appropriate for many
situations and have the advantage of making this binding representation
completely equivalent to lattice models!® for polymer solutions; the analogy
is that solvent molecules and linear polymers correspond to unoccupied
sites and ligands bound to multiple sites on a lattice, respectively. Thus,
the partition function available for lattice models of polymer solutions can
be utilized directly to treat ligand binding.
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In the Bethe approximation, only the occurrence probabilities of specific
site pairs and no longer site clusters are taken into account; of course,
long-range correlations in the site-exclusion configurations of bound ligands
are completely neglected. In other words, this approximation is exact only
for Bethe lattices that have no loops of lattice points [Fig. 1(a)]. As aresult,
lattices are represented only by their coordination numbers, z, i.e., the
number of nearest-neighbor points around a lattice point; z = 6 could
represent either a cubic lattice or close-packed lattice in two dimensions.
First, the Bethe approximation formalism is summarized briefly for ligand
binding problems.

A partition function, Z, is represented by

N;(E; + ZQiEii/Q))

Z(NJN) = exp (— >

i=1 kT
X 3 exp (— > szlﬂ) (NN HX })  (5)
*X(r]} I>m=0 kT
where ,
q; = [n; — (2/2)(n; — 1)] (6)
€im = Elm - (Ell + Emm)/2 (7)

k is the Boltzmann constant and 7 is temperature. E; is the binding energy
for the ith ligand species and E;,,, (= E,,;) is the interaction energy between

(a)

(b)

Fig. 1. (a) Bethe lattice with coordination number, z = 3, and (b) usual triangular lattice.
In Bethe lattices, loops of lattice points are not included. Bold lines represent bound li-
gands.
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nearest-neighbor sites that are bound to the lth and mth species; a subscript
0 represents unoccupied sites and Eoq is defined as zero. 2zX;, is the
number of such nearest-neighbor site pairs. zg; is the number of site pairs
between a bound ligand of the ith species and neighboring sites. In Bethe
lattices, these neighboring sites are either unoccupied or occupied by other
ligands, because no loops are included in the lattice structures. Therefore,
in the Bethe approximation that is exact for Bethe lattices, the interactions
between nearest-neighbor sites, Ej,,, are regarded as interligand interac-
tions. Inthe present model, intraligand interactions for bound ligands are
not taken into account beyond the assumption of random site exclusion.
This basic assumption is employed to estimate the combinatory factor,
W(NHN HX ¢4}), which is the number of arrangements for placing N ligands
of each ligand species on the N lattice points under the restriction that the
number of neighboring site pairs bound to { and nth ligand species is equal
to zX ¢, The combinatory factor, w(N;{N ¢} {X ,}), for Bethe lattices was
previously calculated for lattice models of polymer solutions by Miller!”
and Kurata et al.18 Therefore, the sum in Eq. (5) can be evaluated by a
maximum term approximation. However, we take an alternative way, the
quasi-chemical approximation, which was shown by Guggenheim1920 to
be equivalent.

The sum in Eq. (5) is replaced by

_ Z?Imflm .
(-2 £Emtn) i)
Xm m .
L
¢ m= )

where
W(NGINGD) = X w(VGINHX ¢})
{X 9}

This X, is related to a statistical average X, of X, as follows:

€lm __

?lm €im = 0 le dflm (9)

Then, a binding isotherm of Eq. (4) is

In K?N§ = i ) ZZleflm _ ( 2Xim€im

ON; Sm=0 kT o

>m=0 RT )Nj=1, Ny j=0

- a% In w(N3{Ng}) + In w(N{N¢|N; = 1, Ngoe; = 0) —In N (10)
J

If there are no interactions between nearest-neighbor sites, then the first
and second terms reduce to zero. A combinatory factor, w(N;{N}), which
corresponds to a configurational entropy of athermal systems, will be taken
from other earlier work on polymer solutions. The statistical average X
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is evaluated for a simple case in the quasi-chemical approximation and X
is calculated according to Eq. (9).

Combinatory Factor, o(N;{N{)

The pioneering work in lattice models for polymer solution is the cal-
culation of a combinary factor, w(N;{N}), in the Bragg-Williams approx-
imation by Flory?!; w(N;{N}) is the number of arrangements for placing
N flexible chain molecules, each of which occupies a contiguous sequence
of n¢ sites, of each molecular species on the N lattice points. The higher-
order combinatory factor in the Bethe approximation, in which account
is taken of accommodation of the adjoining segment of the given chain on
an adjacent site, was obtained by Huggins,22:23 Miller,!? Guggenheim,24
and Kurata et al.'® (See Refs. 2, 15, and 16 for reviews of their works.) The
combinatory factor in the Bethe approximation is derived with a trivial
extension to systems of multiligand species from equation (C-17) of Kurata
et al.1® Here, it should be noted that the assumption of random configu-
rations for polymers that corresponds to random site exclusion has been
employed to obtain this equation:

In o(N;iNg)) = 3 N; In 2&= D"
i=1 ;

0;
Nm) | [z No+ > i=1q;N;
— — |+ |=||Ny+ Ni |1 11
mgonln(N) (2)( ° iglq‘ )n N (1
where N is the number of unoccupied sites,
No=N - 3 mN; (12)
i=1

The symmetry factor o; is equal to one for the case in which the head and
tail of a ligand are distinguishable, otherwise two. This estimation of
w(N;{N}) is exact for Bethe lattices. The limiting case of z — = of Eq. (11)
corresponds to the result for the Bragg-Williams approximation by Flory.2!
‘From the above equation, the third term in Eq. (10) is found to be

. — nj—2 .
0 In @(ViiN}) _ In 2 = Dm? In (HL) + n;jIn (]—V—O)
aNj oj N N
(No + >.i=1qiN;)
—(nj—1)In N (13)
The fourth term in Eq. (10) is obvious for Bethe lattices:
-1 n;j—2
In w(N;{N¢|N; =1,N§¢j=0})=lnu+lnN (14)

0j
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Quasi-Chemical Approximation for the Statistical Average X

As a simple case, let us consider nearest-neighbor interactions to be the

same for all sites bound to different ligand species:
€0 = €y = € forall: > 0 (15)
€j=¢€; =0 fori = j,1 # 0,andj # 0

There are z(Ny — X)/2 free neighbor pairs, z(2;-1¢;N; — X)/2 neighboring
site pairs occupied by ligands, and zX free-bound site pairs that are as-
sumed to be in quasi-chemical equilibrium:

X2 1

— —=— 16
(No—=X) (Zi=1qiN; = X) v 10
where
X=3¥ X
i=1
v = exp(2¢/kT) (17

Equation (16) is equivalent to the condition for maximizing the term on
the right-hand side of Eq. (8), exp(—2Xe/kT)w(N;{N (X), with respect to
X; w(N;IN{X) was given in Eq. (C-14b) of Kurata et al.!® Then, X =
3 ;=1 X0 is from Eq. (9):

e Xe _z 2 i=19iN: (8 — 1))
KT 2 [NO In (1 TN+ 1)
No(B-1) )]
+ {N;In |1 18
i§1 ? n( ¥ Yi=1giN; (B + 1) (18)
where

4Noy i=19:N;
(No + 2i=1q;N;)?
This result is a trivial extension of that1 for the single-component systems

of polymer solutions. Then, the first term in Eq. (10) is found from Eq.
(18):

8= [1 + (y - 1)] v (19)

0 [2Xe - >i=1q:Ni (B — 1))
ij(kT) o |7 in (1 NGB+ D
_ No(B—-1)
*tajln (1 * Yi=1q:N; (B + 1))] (20

The second term for Bethe lattices is trivial:

e

= 21
LT (21)

i €
Nj=1, N ;=0 kT
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Finally, from Egs. (13), (14), (20), and (21), the binding isotherm Eq. (10)
is represented in an appropriate form for Scatchard plots by

N (N.Q)”f (No + Zi=1QiNi)(1—nj)

KONIN ~\N N
>i=1qilN; (B — 1)]2ni/2 No(B=1) ]-zairz
1+ 2qj/2 29
X [ NoB+ 1) SaNB+y, @Y

In the sums over ¢, the index ¢ takes values from 1 to the number of ligand
species. Equation (22) is general and includes a number of cases previously
treated; it should be noted that Eq. (22) for a case of z = 2 is just the same
as the binding isotherms of Eq. (15) of McGhee and von Hippel® or Eq. (25)
of Schwarz25 for one-dimensional lattices, as expected from the fact that
a one-dimensional lattice is a special case of Bethe lattices for which Eq.
(22) is exact. The limit of Eq. (22) as z — « with a fixed value of z¢ cor-
responds to a binding isotherm in the Bragg-Williams approximation:

. N; No\ni 2ezn; Y ;=1n;N;
] - 0 ] Lt =1T04V]
i (K})N§N) (N) "p( RTN ) 23

Z > ®

ze = const

In the following, we will discuss the dependences of the binding isotherm
on lattice structure and multiple site exclusion by a bound ligand.

Phase Transitions in Two- or Three-Dimensional Bethe Lattices

Phase transitions can occur in two- and three-dimensional lattices. First,
let us calculate the equation of state, in order to derive critical conditions
for phase transitions. A thermodynamic variable, ®, conjugate to the
number of sites, N, is

PN olnZ

kT El " dN;
® and N are analogous to the usual pressure and volume, respectively.
Then, from Egs. (5), (8), (11), (13), (18), and (20), the equation of state
becomes

+1nZ (24)

@ _ ln£+ Z 1 (No + >;=1q;N;)No(B8 + 1)

kT No 2 [No(B+ 1) + Xi=1q:N; (8 — 1)]
Conditions for phase transitions are the equalities of ® and \; among dif-
ferent phases; A; can be calculated from Egs. (2), (5), (8), (13), and (20).
These equations are just the same as those for mixing chemical potentials
of solvent and polymers among different phases; —® will be the mixing
chemical potential of a solvent, if unoccupied sites in ligand binding are
interpreted as solvent molecules. The lattice model treated here for ligand
binding is equivalent to that for polymer solutions. Thus, discussions!5-21:26
with respect to phase transitions in lattice models of polymer solutions are
applicable to the present problems of ligand binding. Critical temperatures
and phase diagrams have been examined in detail for polymer solutions

(25)
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that include multicomponent systems, although the Bragg-Williams ap-
proximations rather than the Bethe approximation have commonly been
employed.

For simplicity, let us consider a system of one ligand species. The critical
point is the point where the first and second partial derivatives of ® with
respect to N are both zero. For a simple case of n, = 1, critical values of
v, n1N1/N, and In(K{N{y#91/2) are found at [2/(z — 2)]2, 1/2, and 0, re-
spectively. In the limit as z — « with ze¢ fixed, which corresponds to the
Bragg-Williams approximation, the critical point!%21 becomes

1
zlnvy, =— (1 +nl?)? (26a)
n

N

These two limits suggest that v, is a decreasing function of both z and ny;
calculations in the Bethe approximation confirm this dependence to be
more general. Critical values of v, n1N1/N, and In(K{N/{~y291/2) have been
calculated numerically in the Bethe approximation by using Eq. (25) for
various values of z and n;. Figure 2 shows that these calculated . exhibit
the expected behavior. The exact values of vy, calculated from the equa-
tion,2? cosh[(ln 7v.)/2] = sec(w/z), for cases of triangular, square, and hex-
agonal two-dimensional lattices with n, = 1 are also shown as crosses in Fig.
2. Although the values of 7y, for the Bethe approximation are incorrect
in the limit of n; = 1, this approximation is useful to demonstrate the
qualitative effects of z and nq; v, decreases as either n; or z increases.

=(1+ni»)-1 forz—> o (26b)

c

(n1N1

15
s
o
M
M
@
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5
1

2 4 6 8 10
N
Fig. 2. Critical values of +y in the Bethe approximation for single ligand species. Curves
from top to bottom are for z = 3, 4,6, 8, and 12. X’s show exact values of v, for n; = 1 from
top to bottom for triangular, square, and hexagonal two-dimensional lattices. These exact
values of . are the solutions of the equation (Ref. 27), cosh[(In v.)/2] = sec(w/z).
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Fig. 3. Fractions of sites occupied by ligands at critical points in the Bethe approximation
for single ligand species of various sizes ny. Curves from top to bottom are for z = 3, 4, 6, 8,
and 12.

These effects would be due to the fact that the increase of z or n, yields
more neighboring site pairs around a bound ligand. Another interesting
feature of changing n; is that the critical values of (n1N1/N) shift from Y
toward smaller values as n; increases, as suggested by Eq. (26b) for a lim-
iting case (see Fig. 3). This is consistent with the fact that in binding curves
of n1N1/N versus In(K{N{vy291/2), central symmetry around (n1N,/N) =
Y% is not present for cases with n; > 1. See Eq. (22) and Fig. 4.

SCATCHARD PLOTS AND BINDING CURVES

Scatchard plots! are often used for examining the cooperative character
and binding modes of a system. For single-ligand-species systems, Scat-
chard plots exhibit a linear relationship for the case of ni=landvy =1,
L.e., a one ligand-one site binding case without nearest-neighbor interac-
tions. Deviations from linearity can yield information about the cooper-
ativity and binding modes. Here, we will use normalized Scatchard plots;
N1/(KIN{N) versus niN;/N. To examine the effect of coordination

1.0

. R
[
o
~
[=3)
0.
0 4 8

0.0
4

N, /N
(3]

In (K$Nfyzar/2)

Fig. 4. Binding curves at critical points for single ligand species calculated with Eq. (22).
Curves from left to right are for ny = 1, 5, 8, and 10 with z = 6.
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number, z, and the number of sites occupied by a bound ligand, n;, on
normalized Scatchard plots, we first consider binding at the two extreme
limits where most of sites are either unoccupied or occupied.

In the case of low occupancy, Zn;N;/N « 1, Eq. (22) becomes

N; Yi=1nilN; >i=1¢iN;
) 1 &=l R — — o =10l & Loni )
KININ 1 N tleqi(vy =D = (= 1] N
2 i=1niN;
+ et 2
0( N ) 27

For single-ligand-species systems, the slope of Scatchard plots at small
values of n1N1/N is =1 + [z2q1(y — 1) — (ny — 1)]q1/n1, whose first and third
terms represent contributions from site exclusion by a bound ligand and
second term from the creation of sites with the interaction statistical weight
~; the contributions from the excluded-volume effects are always negative,
but the second term can be positive or negative depending on whether (v
— 1) is positive or negative. Here, it should be noted thaty > 1ory <1
indicates positive (attractive) or negative (repulsive) interactions between
bound ligands, respectively. Then, the initial slope takes values larger or
smaller than —1, depending on whether the term, zq:(y — 1) — (n; — 1),
is positive or negative. The limiting value, 7yq, of 7y for the initial slope of
—1 as a function of z and nq is

Yo = [z = Dny + 1]/[(z — 2)n; + 2] (28)

Thus, if v is larger than v, Scatchard plots will effectively exhibit positive
cooperativity of the system. If a system does not show an effectively pos-
itive cooperativity, a phase transition will never occur. Therefore, critical
values, Y., must be greater than (. 7o is a monotonically increasing
function of n; and a decreasing function of z; it is notable that the depen-
dence of o on n, is opposite that of ., while v and v, depend on z in a
similar manner. On the other hand, the dependences of the initial slope
of Scatchard plots on z and n; are not simple, although the initial slope is
an increasing function of y. As either z or n; increases, the contributions
to the initial slope from excluded-volume effects, =1 — (ny — 1)q1/n1, be-
come more negative, because the increase of excluded-volume effects
strengthens negative cooperativities. On the other hand, the second term
in the equation for the initial slope, 2q%(y — 1)/n1, becomes more positive
or negative depending on the sign of (Y — 1), as z increases. In other words,
cooperativities are amplified whether positive or negative; this is due to
the fact that the increase of lattice coordination numbers, z, yields more
neighboring site pairs which could interact with a bound ligand. For
higher-dimensional lattices, z > 2, the second term depends on n; in the
same way except at small values of n; and z; for one-dimensional lattices
with z = 2, the contribution of the second term becomes smaller as n; in-
creases. Consequently, the dependences of Scatchard plots at low occu-
pancy on z and n are affected by these two counteracting effects in cases
of v > 1. The two effects correspond to the amplification of positive
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cooperativities and the increase of negative cooperativities due to ex-
cluded-volume effects. The derivative of the initial slope with respect to
zis [(y — Dzni + 2(y — v0)(n1 — 1)]q1/(2n1). Thus, the initial slope is an
increasing function of z in the range of vy = vy(z,n;) and a decreasing
function of z if v = 1, but it may decrease with increase of z in the range
of 1 <y <o Asan example, Fig. 5(a) shows that the initial slope de-
creases when z changes from 2 to 3 in the case of n; = 5 and a particular
value of 7y that is equal to yo for z = 6 and n; = 5. This is in contrast to the
case of n; = 1 where the initial slope will be an increasing function of z if

1.5

8 3304

Ny/(K§NEN)

B 5504

In (KINfy%/2)
(b)

Fig. 5. (a) Normalized Scatchard plots and (b) binding curves for single-ligand-species
systems for v = 1.18182 and n; = 5. Curves in (a) are from top to bottom for z = 12, 10, 8,
6,2,and 3. Curvesin (b) are for z = 2, 3, 6, 8, 10, and 12 from left to right at small values of
the ordinate. The value of v is lower than the critical value for phase transition, vy, for all
cases. The initial slope of Scatchard plots for z = 6 is —1 for these specific values of v and

ni.
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v — 1is positive. The derivative of the initial slope with respect to n; is
[n2(z — 2){(z — 2)y — (z — 1)} — 4(y — o)]/(zn}). For higher-dimensional
lattices with z > 2, the slope will be a decreasing function of ny if ¥ = yo(z,n1
= ) = (z — 1)/(z — 2); otherwise it may increase with the increase of n;
except at small values of ny. In contrast, the initial slope for one-dimen-
sional lattices with z = 2 is a decreasing function of n; except for the cases
of strongly negative interactions, v < . This is one of the most important
differences between one- and higher-dimensional lattices. Figure 6(a) gives
a typical example of the dependence of Scatchard plotsonn;. Forz =6
and v = 1.3 which is larger than (z — 1)/(z — 2), the initial slope increases

15
z=6
S y=13
3
N
oo
1.0
3
Z
4
73
05
n=10\5\ 2 \ 1
0.0
0.0 05 1.0
nyNy/N
(a)

in (KINfy2a,/2)

(b)

Fig. 6. (a) Normalized Scatchard plots and (b) binding curves for single-ligand-species
systems for z = 6 and ¥ = 1.3. Curves in (a) and (b) are for n; = 1, 2, 5, and 10 from top to
bottom at large values of the abscissa. The value of v is lower than the critical value for phase
transition, ., for all cases.



2266 MIYAZAWA

as np increases beyond 2. The amplifications of positive cooperativities
accompanied by the increases of lattice coordination numbers, z, and the
numbers of sites occupied by a bound ligand, n,, would be responsible for
the dependences of the critical value of 7 for phase transition on z and ni;
in Fig. 2, v, (>7,) decreases as either n; or z increases.

Next, let us consider the other limit where most sites are occupied. In
the limit of high occupancy, No/Z¢;N; « 1, Eq. (22) is approximated by

_ZVZ___ = (&)nl (M)(l_nj) y?(ajtn;)/2 [1 +0 (_A_)
KININ N N 2i=14:N;
Andifn; =1,

(29)

Ni/(KSNIN) = (No/N)y*

Then, the slopes of Scatchard plots approach zero except for n; = 1 as most
sites become occupied. As shown in Fig. 6(a), the larger n, is, the more
quickly the slope approaches zero, because of the n;th power dependence
on (No/N). This is due to excluded-volume effects of bound ligands; the
negative cooperativities originating from multiple site exclusion become
strongest when most of sites are occupied by ligands and n; increases.

A slightly different representation of the binding isotherm in the limit
of high occupancy might be useful when the number of sites occupied by
a bound ligand, n;, is estimated from experimental data. Equation (29)
1s transformed as follows:

2_i=1NN; [(Zi=IQiNi)_1+nf _ N; i
= =1 ==t ,y—z(qj+nj)/2__L (30)
N N KININ

For single-ligand-species systems, we get the followihg equation by ap-
proximating N1/N in the right-hand side of Eq. (30) by 1/n1:

e

N+ N[ n\N;+ N}
E) I A S | ) N__|[Ym
—_ Ao ¥4 n 31
X ’1 (nl) T KN ey ] @Y

This equation is appropriate only for the high-occupancy limit: N/(N 1+
N{) — 0. Then, as indicated by Schwarz,328 the number of sites occupied
by a bound ligand, n{, might be estimated from the initial slope in the plots
of the fraction of bound ligands, N1/(N; + N}), versus the number of sites
per ligand, N/(N; + N¥); this limit should be taken carefully to avoid
contributions of the second term in Eq. (31); otherwise n; will be overes-
timated.

Another representation of a binding isotherm is the binding curve, such
as the ratio of bound sites plotted as a function of the logarithm of the
concentration of free ligands. Figures 5(b) and 6(b) show binding curves
for the same parameter sets as in the Scatchard plots of Figs. 5(a) and 6(a),
respectively. In these binding curves, the effects of parameters, z and n;,
are not so apparent as in the Scatchard plots, but one should note the effect
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of z on the sharpness of the binding curves in Fig. 5(b). Also, an increase
in n; produces more asymmetric binding curves as shown in Fig. 6(b). The
asymmetry in binding curves results from the fact that the negative
cooperativities due to excluded-volume effects become stronger as more
sites are occupied and n; increases.

However, this type of binding curve is useful for analyzing systems in
which the same species of ligands can bind in different modes, i.e., a ligand
can exclude different numbers of sites with different intrinsic binding
constants. Let us consider a typical case in which ligands can bind in both
a monovalent and bivalent form such as antibodies, but the assumption
of Eq. (15), for nearest-neighbor interactions between bound ligands is still
in effect. The binding model for bivalent antibodies has been studied for
a one-dimensional lattice.??® Such one-dimensional treatments are of
limited applicability for most phenomena observed in biological systems,
because these phenomena usually occur on surfaces. One example is the
binding of antibodies to membrane-bound antigens. The use of the binding
isotherm, Eq. (22), is clearly more appropriate than previous theories for
modeling of such systems. For the present case, the simultaneous equa-
tions of Eq. (22) must be solved with the condition Nf = N{ = N/, where
the subscripts 1 and 2 represent the two binding modes. Figures 7(a,b)
show Scatchard plots and binding curves for the particular case of n; = 1
and ng = 2. Although the Scatchard plots do not exhibit any remarkable
qualitative differences from those for systems with only one binding mode,
two-step saturation of binding curves can be observed for cases in which
bivalent binding occurs with larger intrinsic binding constants than mo-
novalent binding mode or positive nearest-neighbor interactions exist. At
low free ligand concentrations, more ligands can bind in a bivalent mode
than in a monovalent mode because of larger binding affinities originating
in a larger intrinsic binding constant or positive nearest-neighbor inter-
actions; from Eq. (27),

N, \K?

1+ [2(g; — qr)(y = 1) = (n; — np)] (Z gl*]\&)]

i=1 N
at the low-occupancy limit. Here, it should be noted that in cases of v =
1and KY = K9, ligands always bind more often in binding modes in which .
fewer sites are occupied; from Eq. (22), N;/N}, = [No/(No+ X ;=1q;N;)]ni— "k -
> 1fornj <np. Asthe freeligand concentration increases, ligands bound
in a monovalent mode gradually increase in order to balance chemical po-

tentials between free and bound ligands by increasing the total number of
bound ligands; from Eq. (29),

Ni_ (Kl’) __M_]
Nr  \K}) [(Zi=1q:Ny)
at the high-occupancy limit. As a result, the number of ligands binding

in a bivalent mode shows a maximum, and two-step binding curves are
observed [see the solid and dotted curves in Fig. 7(b)]. The two-step

nj—nkg
! yz(qﬁnj—qk—nk)/Z
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Fig.7. (a) Scatchard plots and (b} binding curves for single-ligand-species binding in two
modes for z = 6 and v = 1.5. Ligands can bind in either a monovalent mode, n; = 1, or a bi-
valent mode, ng = 2. Simultaneous equations, Eq. (22), have been solved under the condition
of Nf = N{ = Nf. Curves A and B are for K3/K9 = 1 and 4, respectively. In (b), the ordinate
shows the ratio of the total number of bound ligands to the number of sites for solid curves
and the ratio of the number of monovalent or bivalent bound ligands to the total number of
sites for the dotted curves. Binding in a bivalent mode exhibits a maximum.

binding curves will be amplified by increases in the coordination number,
z,ify> 1.

Interpretation of Experimental Data

Because Scatchard plots and binding curves can be similar in appearance
for markedly different sets of parameter values, their extraction from ex-
perimental data can be a treacherous exercise. As pointed out previous-
ly,6:25:30.31 careful estimates are required of all parameters, including in-
trinsic binding constants K?, an interaction parameter v, the number of sites
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occupied by a bound ligand n;, the total number of sites N, and coordination
number z. One possible procedure for a simple case of single-ligand-species
system is outlined below. First, K{ may be estimated from the initial in-
tercept in Scatchard plots. Then, n{ might be determined from the initial
slope in the plots of the fraction of bound ligands versus the number of sites
per ligand by using Eq. (31). If N is not explicitly known, determining n;
will also require the analysis based on Eq. (29) of the power dependence
of Scatchard plots on No/N at the high-occupancy limit, which might not
be possible. The relationship between the values of z and vy may be ob-
tained from the initial slope of Scatchard plots by using Eq. (27). Finally,
the exact values of z and v would be obtained by fitting Scatchard plots
and binding curves over the whole region to experimental data. This
procedure may be iterated to get consistent values for parameters. Because
of the large number of parameters, it is highly desirable for some parameters
to be determined by external means before analyzing binding data. Gen-
erally, both Scatchard plots and binding curves should be employed to fit
experimental data, because of differing sensitivities to parameter
values.

DISCUSSION

A binding isotherm has been calculated on the basis of the Bethe ap-
proximation. The extension of theory to multidimensional lattices would
increase its applicability to analyses of binding data observed for a wide
variety of biological systems. The effects of ny, the numbers of sites oc-
cupied by single bound ligands, and z, coordination numbers of lattices,
on binding isotherms in single-ligand-species systems are noteworthy. (1)
Exclusion of multiple sites yields negative cooperativities of ligand binding,
but in higher-dimensional lattices it can also amplify positive cooperativities
originating in attractive interactions between bound ligands. This positive
amplification can be sufficient to overcome the negative excluded-volume
cooperativities at low occupancy. Multiple-site exclusions also yield -
asymmetric binding curves, because the negative cooperativities due to
excluded-volume effects become stronger as more sites are occupied. (2)
Larger coordination numbers amplify cooperativities of ligand binding.
(3) As a result, increases of z and n decrease the critical value, ., of the
interaction parameter between nearest-neighbor sites bound to ligands for
phase transition as well as making the fraction of occupied sites at the
critical point shift from 1 toward smaller values. In applications to real
systems, n; and z should be regarded as effective numbers, because the
numbers of occupied sites might vary and the array of sites could be
fluidlike rather than rigid and regular.

In the derivation of the binding isotherm, Eq. (22), we have assumed that
nearest-neighbor interactions are the same for all sites bound to different
ligand species, i.e., Eq. (15). For multiligand species systems, this as-
sumption might not be satisfied. If it is not satisfied, it will be difficult to
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evaluate X, with the quasi-chemical approximation. Instead, the
Bragg-Williams approximation might be used in this case to estimate X, Im
in the form X, = ¢{N;gmNm/(No + Z;21q;N;) with go = 1; however, it is
appropriate only for cases with weak nearest-neighbor interactions. This
yields

N; (No)"f (N0+ 2i=19i )(1 nj)
KNIN ~\N N

z
X exp ﬁfz [(elon,- — €jq; + €0;q;)

+ (flONO + Zm>lflQONm) } QiN; ]
(g = ny) (32)
(No + Xi=1qiN;) (No+ i=1q:N:))|
Here, g; may be replaced by n; by taking the limit of z — . Although the
Bethe approximation is higher order than the Bragg-Williams approxi-
mation, the former does not necessarily improve agreement with experi-
ments for polymer solutions.?233 This may be attributed to imperfections
inherent in the lattice model itself for polymer solutions.!5 However, it
is unknown whether this is true for ligand binding systems.

We thank R. L. Jernigan for critical reading of the manuscript and valuable comments and
suggestions, and K. Iwasa for valuable comments.
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