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A configurational partition function for transitions between the right-handed B helix and the left-
handed Z helix in a closed circular double stranded DNA is formulated in an idealized model. The
twisting potential of base pairs is assumed to be a double quadratic potential with two minima at
the B and Z forms and nearest neighbor coupling between base pair twists to be harmonic. In
addition, long range interactions attributable to the conservation of linking number between two
closed DNA strands are approximated by a harmonic potential of the writhing number that is
equal to the linking number minus the total twist. Interactions between phonons and B-Z
junctions are neglected as well as interactions between junctions. The configuration partition
function is formulated for two cases, one that all base pairs can take the Z form as well as the B
form, and another that only part of DNA can take the Z form. Then it is applied to analyzing B-to-
Z transitions induced by changing the linking number of a closed circular DNA. The
characteristics of B-to-Z transitions are examined in detail as well as experimental data analyses.

I. INTRODUCTION

Structural transitions in one-dimensional systems are
often found in biological systems; of course, they are not
phase transitions. Helix-coil transitions of polypeptides, and
double helix-random coil transitions of linear DNAs! are
one of typical examples that have been extensively studied so
far.? Although there are many similiarities, the most distinc-
tive feature from such helix-coil transitions in B-to-Z transi-
tions of a closed circular double stranded DNA is that inter-
actions which are essentially long range ones are involved in
the system.

DNA is well known to take the Watson—Crick right-
handed double helix® called the B form under physiological
conditions of high humidity, although another type of right
handed conformation, the A form, is observed when humid-
ity is lower. Single-crystal x-ray analyses of double-stranded
oligodeoxyribonucleotides revealed a novel structure of
DNA which is the left-handed helix termed the Z form*>;
see Refs. 6 and 7 for a review of structural differences among
the 4, B, and Z forms. Although all kinds of base sequences
cannot take the Z form, specific base sequences of alternat-
ing pyrimidine-purine such as d(pCpG),-d(pCpG),** and
d(pTpG),-d(pCpA),>° have been confirmed to take the Z
form; the Z conformation is usually less stable under physio-
logical ionic conditions than the B form. B-to-Z transitions
of alinear DN A, which would be induced by changing envir-
onmental conditions such as salt concentration, might be
analyzed by a simple version of Ising model in which each
base pair is assumed to take either the B or Z form with a
certain statistical weight and nearest neighbor interactions
depending on base pair conformations are assumed. This
simple model, however, cannot be employed to analyze B-to-
Z transitions of a closed circular DNA, because long range

* Correspondence should be mailed to Building 10, Room 4B56 of this ad-
dress.
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interactions must be taken into account in the case of a circu-
lar DNA.

In a closed circular double stranded DNA, a topologi-
cal property of two closed strands, which is termed the link-
ing number, is invariant as long as neither one is broken, no
matter how they are deformed. White'® proved that the link-
ing number and the total twist, which is termed the twisting
number, of a closed ribbon or two closed DNA strands differ
by a quantity which depends exclusively on the curve of the
axis of a closed ribbon or the helical axis of closed DNA
double strands and which was later termed the writhing
number by Fuller!!; see also Refs. 12-14. In other words, the
conservation of linking number in a closed circular DNA
imposes the condition that a change of the total helical twist
must be compensated by the change of the writhing number
that is associated with those of the average total bending
energy and conformational entropy. This condition specific
to a closed DNA is equivalent to introducing interactions
among base pair twists, which are essentially long range in-
teractions and depend on the writhing number that is equal
to the linking number minus the twisting number. In the
result, such long range interactions must be taken into ac-
count to analyze B-to-Z transitions of a closed circular dou-
ble stranded DNA. Thus in the case of closed circular
DNAgs, changing the linking number causes twisting stress.
This specific feature of closed circular DNAs has been uti-
lized to induce the structural transition from the right-hand-
ed B form to the left-handed Z form; B-to-Z transitions of a
circular DNA induced by reducing the linking number have
been confirmed to occur even under the physiological condi-
tions.'>'7 On the other hand, changing the linking number
writhes a DNA double helix and causes its supercoiling’®'
in the left- or right-handed way as well as the deformation of
base pair twists, increasing the free energy of the molecule;
thus B-to-Z transitions induced by changing the linking
number is called supercoiling-induced B-to-Z transitions. B-
to-Z transitions induced by changing the linking number are
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structural transitions induced by changing long range inter-
actions rather than short range interactions. The depen-
dence of the free energy of a B-form circular DNA on its
linking number has been experimentally evaluated®®>*in a
quadratic function of the linking number, i.e., a harmonic
potential.

In models*>~?" that have been employed so far to ana-
lyze experimental data of B-to-Z transitions, an empirical
formula®®-* of the free energy of a B-form circular DNA as a
function of the linking number was explicitly employed with
the assumption that the change of the total twist due to B-to-
Z conformational changes would be effectively equivalent to
the change of the linking number, in order to estimate the
free energy of conformations with Z forms. In these analy-
ses, the contribution of the configurational entropy, which
originates from a number of possible arrangements of B and
Z forms in a circular DNA, was not completely?® or not
taken into account at all.?*?’ In other theoretical mod-
els,”’! B-to-Z transitions induced by torsional stress were
discussed; however, these models cannot be applied to struc-
tural transitions of closed circular DNAs induced by chang-
ing the linking number, because the long range interactions
due to the conservation of linking number are not taken into
account and therefore the free energy of the supercoil forma-
tion is completely neglected.

Here we will rather rigorously formulate the configura-
tional partition function of a closed circular DNA in an ide-
alized model. A twisting potential of base pairs will be expli-
citly assumed to be a double quadratic potential with two
minima at the B and Z forms. Also, nearest neighbor cou-
pling between twists is assumed to be hamonic as a simple
model of interactions that favor a consecutive stretch of the
B or Z form. Long range interactions among twists due to
the conservation of linking number will be approximated by
taking a first significant term, a harmonic term, in the Taylor
expansion with the writhing number. Although these as-
sumptions, specifically for the twisting potential, are certain-
ly idealizations, this simple system is worth analyzing as a
one-dimensional model system in which a displacement po-
tential is strongly anharmonic and also long range interac-
tions are included, and which undergoes structural transi-
tions by the change of long range interactions.

It is important to distinguish two different regimes ac-
cording to the relative strength of the twisting potential and
interactions between neighbors; the Ising limit in which the
twisting potential is so strong that each base pair fluctuates
almost independently, and the opposite limit termed the dis-
placive limit in which interactions between neighbors are
strong enough to make the variation of base pair twists
smooth. In the displacive limit, Krumhansl and Schrieffer*?
and Currie et al.*® have extensively studied dynamics and
statistical mechanics of one-dimensional systems whose sca-
lar field Hamiltonian includes an anharmonic potential and
whose Euler-Lagrange equation of motion is a nonlinear
Klein—Gordon equation that has solitary-wave (called soli-
ton, kink or antikink, or domain wall) solutions; anharmonic
potentials are specifically ¢ %, sine-Gordon and double-qua-
dratic potentials with two degenerate minima. They** have
proved that the ideal-gas phenomenology in which kink-

phonon interactions are exactly taken into account but kink-
kink interactions are neglected gives exact results for the
various low-temperature thermodynamic functions and cor-
relation lengths. They discussed dynamics and thermody-
namics of solitons excited by temperature changes. In the
present system, B-Z junctions, which correspond?’ to kinks
or domain walls, are induced by changing long range inter-
actions rather than temperature or other environmental pa-
rameters that affect the relative energy of the Z form to the B
form. In the continuous limit of base pair position, the analy-
tical expression of a B-Z junction can be obtained for double
quadratic potentials, and then it can be used to calculate the
potential energy stored at a junction (the rest energy of a
kink) and the twist associated with the formation of a junc-
tion. However, the presence of long range interactions
makes it difficult to obtain an exact result of the partition
function and even the estimate of junction—phonon interac-
tions. Thus junction—phonon interactions are neglected here
as well as junction—junction interactions, and the configura-
tional partition function are phenomenologically formulat-
ed. As aresult, this approximation is appropriate for the case
that interactions between neighbors are comparable with or
weaker than the twisting potential. Also the twisting poten-
tialis simplified as a dobule quadratic function whose second
derivative takes the same value at the B and Z forms, so that
phonons will be equally distributed over B and Z conforma-
tional regions rather than trapped in either B or Z regions.
These simplifications lead to the approximation, which is
similar to the Ising model, that librational contributions
around each of conformational states, which are the overall
B conformation, the alternating B-Z conformation and if
possible, the overall Z conformation, in the configurational
partition function do not depend on those conformational
states. In the Ising limit, however, the partition function can
be formulated even for the general case in which the twisting
force constants for the Z and B forms are different from each
other; the formulation of the configurational partition func-
tion in the Ising limit will be presented in the Appendix B.
In Sec. II, we describe in detail the formulation of the
configurational partition function; it is represented as the
sum of conformational states such as overall B or Z confor-
mations and alternating B-Z conformations. The configura-
tional partition function formulated is consistent with the
experimental fact?*%* that the equilibrium ensemble of
closed circular DNAs over the linking number obeys the
Gaussian distribution, indicating that the second order ap-
proximation for long range interactions, i.e., the assumption
of a harmonic potential of the writhing number, would be
adequate. In Sec. II1, the combinatory factor that is defined
as the number of ways to choose a given number of Z forms
with a given number of Z-conformational regions in a circu-
lar DNA is evaluated for two cases; case (a) in which all base
pairs can take both the B and Z forms, and case (b) in which
only a part of a closed circular DNA can take both the B and
Z forms but other base pairs take only the B form. The case
(b) is considered because most experiments have been per-
formed under such circumstances. Section IV deals with the
statistical characteristics of each of overall B and Z confor-
mations and alternating B-Z conformations; the statistical
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average and variance of the twisting number will be dis-
cussed among others. An important fact is that the variance
of the total twist in a closed circular DNA is not the same as
that expected for a linear DNA but reduced by the long
range interactions due to the conservation of linking num-
ber, as if the twisting force constant increased. In Sec. V, the
characteristics of B-to-Z transitions induced by changing
the linking number, specifically the dependencies of the
transition linking number on external variables, will be ex-
amined. On the contrary to the fact, it was claimed? that in
the limit of a long DNA, a segment of the DNA that could
take the Z form would wholly change from the B to the Z
form at the transition point. It will be proved that such a
transition will occur only if the segment that can take the Z
form is short. In Sec. VI, the experimental data of B-to-Z
transitions reported by Peck and Wang?® are analyzed and
the structural parameters, such as the relative energy of the
Z form to the B form and the energy of the formation of a B-
Z junction among others, are estimated. Also, the dependen-
cies of the transition point on external variables are dis-
cussed with examples of numerical results for some cases.

Il. FORMULATION OF THE CONFIGURATIONAL
PARTITION FUNCTION

A principal parameter that discriminates the B and Z
forms is of course the twisting angle of a base pair along the
helical axis of DNA. Thus in the present simple model of B-
to-Z transitions, only base pair twists are explicitly taken
into account. Let us suppose that the partition function is
represented in an orthogonal coordinates system. By inte-
grating the Boltzmann factor over a whole momentum
space, the partition function may be divided into two factors,
the momentum factor Z, and the configurational partition
function Z that includes coordinates variables.

Z=2,Z,. (1)

This configurational partition function could be represented
as follows in terms of an effective potential U, for base pair
twists {7;}.

Zc=| [ driexp[ — BU({7,])], (2)

i=1

where
exp[ —ﬂUEur.-})]EconstflI]qu exp[ —BU (g })]
Xna['f"({Qk}) - Ti]'

{9, } and U are a set of orthogonal coordinates and a poten-
tial energy function to describe a whole system. 7, is defined
as the twist of the ith base pair around the helical axis. Sis 1/
(kT'), where k is the Boltzmann’s constant and T is absolute
temperature. § is the Dirac’s distribution. Equation (2) repre-
sents the configurational partition function for a linear
DNA consisting of N + 1 base pairs or a closed circular
DNA consisting of N base pairs. An essential difference
between linear and closed circular DNA resides in the effec-
tive potential Uy, which will be discussed in the following,.
The potential U is divided here into three terms de-
pending on the range of interactions; a twisting potential

V,:(r;) that may reflect interactions between nearest neigh-
bor base pairs and depends only on the base pair twist,
V,;(r; — 7;_) that is a nearest neighbor interaction poten-
tial between base pair twists, and a remaining part ¥ that
represents longer range interactions.

Uslir)) = Vulr) + Valr, ) R A e

i=1

Simple functions are assumed here for those short range in-
teraction potentials. Because experiments showed that the
stability of the Z form strongly depends on the short range
order of a base sequence, two type of functions are employed
for the twisting potential V,;; specific base sequences of alter-
nating pyrimidine—purine such as d(pCpG),-d(pCpG),**
and d(pTpG), -d(pCpA), >° have been confirmed to take the
Z form. For simplicity, we assume a double quadratic poten-
tial with two minima at the B and Z forms for base pairs that
can take the Z form, and a harmonic potential with a mini-
mum at the B form for base pairs that take only the B form.
We also assume that the twisting force constants for the B
and Z forms are assumed to be the same;

ey + (@3/2)1 —75)* for T>7,
Vilr)>~ 5 s (4a)
ey + (@5/2)r —1z)° for r<7;
or .
Vilr)=ep + (@03/2)(r — 75)%, (4b)
where
ez —ey = —wy(rz —Tp)(7p + 77 — 27,)/2. ()

In the following, Eq. (4a) will be implicitly referred to unless
Eq. (4b) is explicitly cited. The left and right figures in Fig. 1
illustrate the double quadratic potential of Eq. (4a) and the
harmonic potential of Eq. (4b), respectively. In the left-hand-
ed Z helix of d(pCpG), -d(pCpG),,** C-N glycosyl bond
between sugar and base takes the anti conformation, which
appears in all 4 and B DNAs, at every pyrimidine (cytosine)
and the syn conformation at every purine (guanine), making
the twist of each base pair significantly different from each
other. However, such a base dependence of twist in the Z
helix is neglected in the present idealized model; the fact that
the repeating unit of the helix is not a single base pair, as it is
in4 and B DNAs, but rather two successive base pairs (pyri-
midine~-purine pair) will be taken into account later. The
average twists of the standard B and Z forms, 7 and 7, are
approximately equal to’

Tp~1/10, 71,~—1/12.

A twist 7 is defined here as a twisting angle divided by 2,
and the right-handed twist is taken as the positive direction
of twist. These values are based on the results of single-crys-
tal x-ray analyses; 7, = 1/10.4** 0or 1/10.5% and 7, = — 1/
11.6* were obtained in solution measurements. Variation in
individual twist values in B-form DNAs is not insignificant
and appears to depend on base sequences.”> Also, the twist-
ing force constant was reported to depend on the base com-
position of base sequences.*® However, such base sequence
dependencies of the twisting potential are completely ne-
glected in the present model.

The nearest neighbor interactions between the /th and
(f — 1)th base pair twists are approximated by a harmonic
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FIG. 1. Schematic plot of a Z-B junction or akink. A kink of Eq. (25), which
is a solution of Eq. (14} with the double quadratic function Eq. (4a) shown in
the left figure as the twisting potential ¥, is drawn by a solid line in the
middle figure; the dotted line in the left figure shows a cotangent line whose
slope gives a constraining force A needed to make the kink. In the middle
figure, the dotted curve is simply a shift of the solid curve and shows a rest-
ing kink of Eq. (31) that can be formed at the position i, at the right-hand
side of which the twisting potential is equal to the harmonic potential Eq.
(4b) shown in the right figure. The bottom figure shows the twisting poten-
tials ¥, for both kinks as a function of position i. In the top figure, the near-
est neighbor interaction potential V, = (C} /2)(d7/di)* is plotted against po-
sition /; it is the same for both kinks. See the text for details.

potential that favors the regular repetition of the same twist-
ing angle.
2
Varlry = 71— (o = 7o (6)

For a closed circular DNA, the periodic boundary condition
must be satisfied.

Tiy N=T;- (7)

For the case of a linear DNA, V,, is defined as zero; alterna-
tively 7, is regarded as 7,==r,. For simplicity, the force con-
stant C} is assumed here to be the same for any base pair.

Taking account of only short range interactions might
be sufficient unless long range correlations among base pair
twists are an object of consideration. This might be proper
for a linear DNA, but in the case of a closed circular DNA,
long range interactions play significant roles on its confor-
mation. One essential property of a closed circular DNA is a
topological one of two closed strands that is called the link-
ing number; the linking number is deformation invariant as
long as neither one of the closed strands is broken. White!?
proved that the linking number L, of a closed ribbon or two
closed DNA strands and its total twist T, differ by the quan-
tity W, which depends exclusively on the curve of the axis of
a closed ribbon or the helical axis of closed DNA double
strands and which was later termed the writhing number by
Fuller'!; refer to Refs. 10-14 for details.

L =T,+W, (8)
where

Although the twisting number T, is, of course, a property of
a ribbon or two strands of DNA as well as the linking num-
ber, their difference, the writhing number, is a property of a
closed curve such as the ribbon’s axis and the DNA helical
axis. The writhing number is a geometrical property as well
as the twisting number. The writhing and twisting numbers
are both invariant under rigid motions and dilatations. Mir-
ror reflection changes signs of these three quantities. Thus
the writing number of any curve which is its own mirror
image such as a circle is necessarily zero. Also, the writhing
number will be zero if the axis of ribbon or the helical axis is
on a flat plane or entirely on the surface of a sphere.!* Both
the twisting and writhing numbers can take any real number
but the linking number must be integral. The relationship
[Eq. (8)] between the topological and the geometrical quanti-
ties imposes an additional restriction on the conformations
of a circular DNA, causing long range interactions among
base pair twists; in a closed circular DNA, a change of the
total twist must be compensated by the change of the writh-
ing number that is associated with those of the average total
bending energy and conformational entropy.

The long range interaction potential for a closed circu-
lar DNA of a linking number L, is approximated here by
taking the first significant term, a harmonic term, in the Tay-
lor expansion with the writhing number.

B3

V, ~—
ETaN

WZ—B(Z)L TP 9)
( r) _W(k— w)' (

B is termed here the writhing force constant; for a linear
chain, B} is, of course, regarded to be zero. It should be
noted that the long range energy defined by Eq. (9) is free
energy rather than energy, because there may be multiple
conformations whose bending energies are different from
each other but whose writhing numbers are the same.

Then the configurational partition function of Eq. (2} is
approximated as follows:

Zczf dT,, exp(— BV, )f H dr;
xesp| (3 ¥+ ) |o(S 7 - 7.) 1o
zJ- dT,, exp( -—BVL); Z,r,

xew|-A(Svitv) ] aw

where {777} is defined to be the set of twists that corre-
sponds to a local minimum m of the short range interaction
potential (£, ¥, + V,,) for a given value {777} of the total
twist, and Z,, r,, represents librational contribution around
such a local minimum. In other words, {77>™} corresponds
to one of the most probable configurations at a given total
twist T, which may contribute significantly to the partition
function. {7, = 777} must satisfy
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a
E [Vli(‘rr) + Vaip1(Tier — ;)

+ Vaulr —

Z T = Tw,
where A is a Lagrange’s undetermined multiplier.

1[& 4 ]
A=~ ,
,21 dr, ' {rym Ty

Ina s1mple case in which the twisting potentials V|, are
the same for all ;, a trivial solution of Eq.(12) is one represent-
ing a uniform twist; 7, = T, /N. In this case, the constrain-
ing force A is nonzero unless V;; has an extremum at
T,/N; A =w}(T,/N — 7,)with7, = 75 or 7, for the dou-
ble quadratic potential of Eq. (4a). If the twisting potential
V,; were a harmonic potential, Eq. (12) would have no other
solution except the uniform displacement. However, in gen-
eral V,; has at least two minima at the B and Z forms. For
such anharmonic potentials, there may be other solutions
such as alternating B—Z conformations in which deforma-
tion is localized at junctions between B and Z regions.

In the limit of Cp/we—0, it is obvious that each base
pair can take the B or Z form independently. Therefore, let
us consider the opposite limit, i.e., Co/@w> 1. In this displa-
cive limit, the position / may be approximated as a contin-
uous variable. Here in the continuous approximation of Eq.
(12), we show one example of such a solution of nonuniform
deformation that consists of a Z-B or B-Z junction; since
there is only one junction, this conformation is feasible only
in a linear DNA but not in a closed circular DNA; the peri-
odic condition of Eq. (7) is not applied to this case. The con-
tinuous approximaion for Eq. (12) is represented by

Ti_1)] —4=0, (12)

(13)

d o oadt
o Vil — Co FT(I) -4 =0,

(14)
fdiﬂi): T,

The variable i is regarded here as a continuous one. Let us
consider the simple case that the twisting potential ¥;; does

not depend on the base pair position i, i.e., Vy;(r) = V(7).
The first integral of Eq. (14) is
Cl (dr\?
=2 (L) = ¥ile) = Vilra ) = Ar —7a)
=W(r) = Vilrz)—Alr—71z) for ¥V}, =V,
(15)

with the following boundary conditions for solutions of a Z—
B or B-Z junction.

lim ri)=1715 or 75,
i— 4
(16)
lim 47 0.
irtew di
The constraining force A must satisfy the following equa-
tions:

[dVl(T) — dv,(r) =A
T=Tg dT T=7Tg ’
(17)
Vilrz.) — Vilrg') — A
Ty — Tg

The first equation above would be obvious from the defini-
tion of the constraining force, and the second equation is
obtained from Eq. (15). Equation (17) indicates that 7. and
Tz are points where the potential V; has a cotangent line
whose slope is equal to the constraining force 4; the con-
straining force A for this case is a constant depending only on
the twisting potential ¥, unlike that depending on the
amount of uniform deformation in the case of uniform defor-
mations. It should be noted here that the twists 7. and 75.
of base pairs far from a junction are different from the stan-
dard twists 7, and 7 of the Z and B forms where the twist-
ing potential ¥, takes minimal values; if and only if the con-
straining force A is zero, they will be equal to the standard
twists. From Eq. (15), a solution of Eq. (14) is obtained.

[—iy= j;J:ZdT-—;—g [V,('r)— Vi(7s)
- _‘Z‘ :f=f,.(’_"”’)]: - (18a)
=+ [ | Z{rn-re
0 LC}
_ L_‘%Z—l:‘r:ﬁ,(‘r—‘rz/)ﬂ o (18b)

Each solution with plus or minus in the above equation cor-
responds to the Z-B or B-Z junction. The position i, where
the junction is located is an arbitrary constant; the transla-
tional invariance of Eq. (14) is restored. This solution is an
extension of the solution®® of kink or anti-kink for potential
functions with two degenerate minima to general double-
well potentials. The twist 7,. and the energy e,. associated
with the formation of a junction are defined as follows:

nsf" di[r(i)—r(—oon+f°°di[r(i>—f(oo>1, (19)
e =f dz[Vltr()H (M) —Vllr(—oon]

+f dz{mr(z)] (";f”) V,[r(oon]. (20)

The energies e;. and eg. of the Z and B forms in conforma-
tions with a junction are defined as potential energies per
base pair in the regular conformation of the twist 7. or 75-,
respectively.

eg-=Vy(15'), ez =Vi(rz) (21)
If V, is the double quadratic function of Eq. (4a), Eqgs.
(18a) or (18b) will be represented by
r7', + (78 — T_,)[l - exp( — ﬂh’ — ioi)]
Co
for + (i —ip)>0

o+ (g = 1)1 - ex — 2200 — ] )|

0

i) = ¢ (22)

\ for + (i —i)<O0,
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where

Ty =Tg +A/0}, T, =7, + A /0}. (23)

This equation indicates that 7(/) will become asymmetric at
7{ie) = 7, if the twisting force constant is different in the
regions of 7<7; and 7>7,. In case of Eq. (4a) in which the
twisting force constant is assumed to be the same w3 in both
the Z and B conformational regions, the constraining force is

A=(ez —ep)/ (T2 ~Tg) = — (T + 72z — 27;)/2
(24)
and then Eq. (22) is alternatively represented by
Tp — Tz
2

[1—exp(— 1’-—"0'/‘11)]’

i) = 75 % sgn(i — io)
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d;=Cy/w,. (26)

The solution of Eq. (25) for a kink or Z-B junction is plotted
by a solid line at the middle in Fig. 1. The bottom and top
figures in Fig. 1 also show the twisting potential ¥, and the
nearest neighbor interaction potential ¥, = (C3/2)(dr/di)?
as functions of position /. From Eq. (25), the energy e,. asso-
ciated with the formation of a junction, which is defined by
Eq. (20), has been calculated and is listed in Table I; in this
table, the width of a junction is regarded to be equal to 2d.
7, 1S Zero, because 7; must be central symmetric at the posi-
tion i, of a junction in case of the twisting potential Eq. (4a).

Next, let us consider the case that the twisting potential
differs at each side of the position i,

Vill=Vi (L —H{i— i)l + Vi, (NH(— i) (27)

(25) where H is the Heaviside’s function. In this case, the first
where | integral of Eq. (14) is

Co(drV Lo .

L) =l = Vi trteoll = A lr = rtea)) = [ dil¥i s 1) = Vi ()80~ (284)
=Vulr)=Vi_ [ — »)] =4 [1—7(— )] ~J di[V, (1) =V, _(7)]6i — &), (28b)
~ [V,m)— Vig [rl)] =4 [r = 7{0)] for >/, (28¢)
WMo =Vio = o)l —Alr—7(— )] for i<iy

The constraining force A, 7{ — ), and 7( o) are obtained from

e I - (29

dr == ) dr r=1{w)

{Vi_ [ = )] =¥V, _ [lig)1} — {V1 [r{e0)] — Vi, [7(ig)]} 1

(= ) — 7{)

{

The second equation above is obtained from Egs. {28a) and where
(28b). 7{ — ) and 7(w0) are points where the functions AT<O0.
() - V! ~ L7(ig)]} and {.Vl M=V [T(IO)]}.h?ve In this case the constraining force A is equal to
a cotangent line whose slope is equal to the constraining
force A. The formal solution (i) would be obvious from Eq. A= (ez —eg)/ (72 —Tp) +wodT
(28¢). = —w}(7p + 77 — 21, — 247)/2. (32)

As a specific example, it is worthwhile considering a
solution that describes a Z-B or B-Z junction located at a
specific site i, of a composite DNA whose twisting potential
at each side of i, is equal to Eq. (4a) or Eq. (4b); the left-hand
side or right-hand side of the specific site i, takes only the B
form. In othe words, it is supposed that the twisting potential
is

__[Bq. (4a) for + (i — ip)<O

Y lEq. (4b) for + (i —iy)>0 (30

For the twisting potential of Eq. (30), it is obvious from Eq.
{12) that solutions of Eq. (14), which describe a Z-B or B-Z
junction located at i,, correspond to uniform negative twists
of the conformation of Eq. (25).

Tg — Tz

2

) = 7; + sgn{i — i) [1—exp( —|i—ip)/d,))]

+ 4, (31)

The solution Eq. (31) for a kink or Z—B junction is shownby a
dotted line at the middle in Fig. 1. The twisting potential V',
for this case is also shown by a dotted line at the bottom in
Fig. 1. The nearest neighbor interaction potential
V, =(C3/2)dr/di), as a function of position 7, does not de-
pend on A7, because of uniform change of twists. The con-
formational characteristics of this solution are described by
each entry in Table I with Eq. (32) as the definition of 4. The
idealization that the twisting force constant is the same for
both the B and Z forms makes 7; central symmetric at the
position i, of a junction for both twisting potentials of Egs.
(4ajand (30), leading to simple pictures that 7. iszeroand e;.
is constant.

In case of a closed circular DNA, alternating B-Z con-
formations must have at least two junctions, a Z—-B and a B
Z junction; note the periodic boundary conditions [Eq. (7)].
Equation (12) or {14) may have solutions that correspond to
alternating B~Z conformations with multiple junctions. It is
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TABLE L. Characteristics of alternating B-Z conformations.*

Z form Z-B or B-Z junction

in alternating B—Z conformations

B form

Width 2d,=2C,/0,

Twist T2 =Ty + A /0] dyrz. + 75 +d,7y Ty =Ty + A/}
7, =0

Short range

interaction e, = e, + 4 %/(20) die,. +e; +dyey ep. =ep +1%/(202)

energy {e,, = Coo[(rs — 72)/2]7)°

*For Eq. (4a), A = (e; — ep)/(r; — T5) = — w}(1p 4+ 7, — 27,)/2 01

for Eq. (30), A = (e; — e3)/ (rz — 75) + Wi AT = — (15 + 7, — 21, — 247)/2 With A7<0.
®This formula of e,. is appropriate for the regime d,3 1 because Eq. (25) or (31) based on the continuous

approximation is used.

hard to obtain such solutions of Eq. (12) or (14), because of a
nonlinear equation. However, if the density of B-Z and
Z — B junctions in alternating B-Z conformations is so low
that junctions are well separated from one another, then in-
teractions between junctions could be neglected, and each
junction in such conformations will be well approximated by
solutions with only one junction like Egs. (25) and (31). The
continuous approximation has been used to obtain explicit
functional forms of B-Z junctions. It should be noted here
that all derived in the continuous approximation except the
functional form of a junction and the estimate of ¢;. based on
it do not depend on the approximation; 7. = O for the twist-
ing potential Eq. (4a) can be proved without the explicit func-
tional form of 7;.

In the following, the configurational partition function
of Eq. (11) will be formulated phenomenologically for two
cases; one in which the twisting potentials for all base pairs
are represented by Eq. (4a), and the other in which DNA
consists of two types of segments whose twisting potential is
assumed to be Eq. (4a) or (4b). In either case, it is assumed
that all possible conformations that consist of alternating Z
and B regions separated by the Z-B or B-Z junction contri-
bute significantly to the configurational partition function
Z. Also, the average conformational characteristics of the
Z and B regions and junctions are assumed to be well ap-
proximated by those in conformations that have only one
junction.

A. Case (a) in which any base pair can take both the 5
and Z forms

The configurational partition function of Eq. (11) can be
approximated by the sum of terms each of which represents
the ensemble of uniform deformations over an entire DNA
from the standard twist 75 of the B form, or that from 7, of
the Z form, or the ensemble of alternating B~Z conforma-
tions.

Zo~ Z.,+Z;pz, (33)

oe(B,Z }

where the first and second terms are represented by

ZC,o(e[B,Z h ZJ;',,/N . dT, Z(r,: T, /N}
> T 0r <7y
Xexp[ — BV, (T,)]
xexp| B3 VlT./N)] (34
ZC,BZ: Zm,Tw(m)

me{ alternating B-Z conformations}

X exp{ — BV, [T,(m)]}

Xexp( -B [z vV, + Vz,.]‘ ...})' (35)
First let us discuss Eq. (34). The librational factor in Eq.

(34) is defined as
AT, AT,

Zis=1,N) EJ H dAT,-eXP[ -8B (A;Ari + Z ; =
X [ forj] {ri=T./N} )}5(241',.)

AT, A7

= [ aarese] (5 5 52
X [Ve, ] irim 1) )}5(2“4@), (36)

where A is the constraining force that is defined by Eq. (13).
The second derivative matrix of the short range interaction
potential is defined as

d2
Vr,.r,E[‘sij ;2‘ Vi— C(2)(6i+ y 25;'1' +6i——lj)] » (37)

where §;; is Kronecker’s 6. If ¥, is equal to Eq. (4a),

e 2]

—V,=wi|1-6 38

dr} 1 @ [ (7'3 4 B8)
and then the second derivative matrix of Eq. (37) will be
equal to

V2171—=-[w(2,5,~j —C36i 1 — 28, +6:_4)]s (39)

except V, . at 7, = 7,; the uniform deformation of 7, = 7,
corresponds to an unstable point in the short range interac-
tion potential. The domain of integration of T, in Eq. (34) is
the region of the B or Z form, ie., T, /N>7,0r T,/N <7,
however, significant contributions may come only from the
small range of T,/N near 7 or 7. In the result, the second
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derivativematrix V, . 1n Eq. (36) can be replaced by V and the configurational partition function Z 2, for harmonic lat-
then Eq. (34} is approxxmated by changing the domam of tice vibrations with the force constant Vﬂm.
integration of 7, from a limited range to a whole domain.

Bm2 172
o Z34r=0 =Z%p( ) : “2)
Zc,mew.z;)’:—" aT, ZEAr,=0 CXP[ _BVL(Tw)] 27N
. 2 where the configurational partition function Z2, for har-
X CXP[ BN [e +— (7 = a') ” , (40) monic lattice vibrations or phonons is

where zo,= T[4 ZZATAT V‘T)”
Zo):ATFOEJ'l:IdATi exp[ (224741— Vgrj)] =f[( 217;7')exp[ ( 2 c )]
xs(ZATi). 1) i) {1+ [1+4C3/w})]'")

The derivation of Eq. (43) will be given in Appendix A. In the
The librational factor [Eq. [41)] can easily be calculated from result, the ensemble of uniform deformations is represented
the fact that if ¥, = 0 and e, = 0, Eq. (40) will be equal to by

|

Pk \! ?,+B2 wi;N7, + BIL, \?
Zeeinzn=Z % ( de exp o O(Tw— Owg+3g (44a)
2n2
@y By
X exp( — BNe,Jexp] — f————— (L, — N7, 2]
p( ) p[ Bz(wg+Bg)N( k )
wz /2 wZBZ
=Z? (———"——) exp( — BNe, )ex [— 0 (L, N¢UZ]. 44b
o\ 22 1 B2 pl Jexp ﬁ2(0+B)N( ) (44b)

Next let us discuss Eq. {35) that represents the ensemble of alternating B—Z conformations. On the basis of the discrete
system, the integral of T, and the sum over energy-minimal conformations in Eq. (11) are replaced in Eq. (35) by the sum of
T, (m)over alternating B—Z conformations; in a discrete system, the total twist T, (m) of an alternating B—Z conformation that
corresponds to a local minimum of the short range interaction potential is quantized. If it is assumed that the average
conformational characteristics of Z and B regions and junctions in alternating B—Z conformations with multiple junctions are
well approximated by those in conformations consisting of one junction, the total twist T, {m) and the total short range
interaction energy will be approximated by (Nz75. + N7z +jr;.)and (Ngzep. + Nze;. + je,.), respectively; Ny, N, andj
are the numbers of the B forms, Z forms, and junctions, respectively. The twists 7. and 7. and the energies e;. and e, of the
Band Z forms are defined by Eqgs. (17) and (21), and the twist 7,. and the energy e, associated with the formation of a junction
are defined by equivalent equations in the discrete system to Egs. (19} and (20). Let us consider libration around such
alternating B—Z conformations. If the twisting potential V), is the double quadratic potential of Eq. (4a), the short range
interaction potential for small fluctuation of such energy-minimal conformations will be approximated as follows:

[z

fri=7"4+ AT, /N + A7,

ZAT,-:O]
AT, AT,
R 1 0 S ) LR

(AT ) ZZATAT o

NB(TB' —TB)+NZ(TZ' —Tz)+ATw) ATAT

N +2 Z (45)

[gnen]

~Ngegz + Nze,. +je,

i i

. Narj
= Npey + Nze, +je; + 2

where A is the constraining force that is defined by Eq. (13). The second derivative matrix ¥, at an alternating B-Z
conformation is approximated as ¥"° w1th neglecting the singular point of 7; = 7,; refer to Eqs. (37)—(39) This approxima-
tion would be appropriate for small ﬂuctuatlons in the discrete system; fluctuations must be too small to change positions of
B-Z junctions. Equations (21), (23), and (24), which describe relationships among 7., 75, €5, €., and A for the twisting
potential Eq. (4a), are used to transform the second to the third equation above. Then Eq. (35) would be approximated as
follows; 7. is equal to zero in case of Eq. (4a).
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22

{NpNz, jIN=Ng+ Nz j>1}

XJ‘ JAT exp[ _BNwﬁ (NBTB: +Ny7z. +jr;. + AT, — Nyry —Np72 )2]
AT, ~0 v N

ZC,BZEZgA‘r,»=O C(NB,Nz,])eXP[ —B(Ngep + Nze, +jeJ‘)]

2

'B
—BA; (Ly —Np7g: — Ny15 —jrs0 —ATw)Z} .

xexp] (46)
C (N3 Ny, j)is the number of configurations in which the number of base pairs in the B form, the number of Z forms, and the
total number of B-Z and Z-B junctions are equal to N, N, and j, respectively; base pairs at a junction are regarded as either
the Z form or B form and therefore N = Ny + N. The sums in Eq. (46) are performed over all possible combinations of
(Ng,N, j) with at least a junction, i.e., /> 1. Then, with the approximation of extending the domain of integration of AT, from
a limited range to a whole domain, Eq. (46) is transformed to

2\1/2
Zcpz== (()JP (ﬂwo ) z z

27N
{NgNz jIN=Ng+ Nz, j>1}

C(Ng,Nz,jlexp[ —B(Ngep + Nzez +je;.)]

B (0} +Bc2>) ( @3(Ny7p + Nz7z +j7;.) +Bng)2}
XIdATwex{————-— T, +Ngrg. + N7 +j1;0 —
P IN BTB zTz +JT; o + B2
5B} . ]
Xexp{ —f—————(Ly — Ngrg — N7, —jr;.)* 47a
P{ 2(a)(2)+Bg)N(K BTp 2Tz —JTs) (47a)
w? 172
=Z%P(_'—2 2) 2 z C(Np,Nz,jlexp[ —B(Ngep + Nzez +je; )]
ws + B
{NpNz jIN=Ng+ Nz j>1]
xex B———— —Ngrg — N7, — 7)1 2]. 47b
P{ 2(0+B)N(k BTB 2Tz —JTs) (47b)

The assumptions and approximations used to derive Egs.
(47a} and (47b) are equivalent to neglecting interactions
between phonons and junctions, and also neglecting the pos-
sibility that phonons are localized at either Z or B conforma-
tional regions; phonons will be equally distributed over Z
and B regions in case of Eq. (4a), because the twisting force
constant is the same for the Z and B forms. The approxima-
tion of neglecting phonon—junction interactions is more val-
id for smaller values of d;; the limit of d,—0 corresponds to
the approximation of Ising model.
B. Case (b) in which only part of DNA can take both the B
and Z forms

DNA is assumed to consist of two types of segments.
Multiple segments with the total length N, that can take the ,

lZ form with the twisting potential of Eq. (4a) are supposed to
be inserted into a host DNA with the length N\(=N — N,)
that can take only the B form with the potential of Eq. (4b);
the number of junctions between those two types of segments
is supposed to be equal to J. In this case, the limiting confor-
mations induced by reducing the linking number cannot be
uniformly, negatively twisted ones from the Z conformation
but from the conformation in which the specific segements
of DNA that can take the Z form are completely in the Z
form and the other segments are in the B form; each segment
is assumed to be longer than the width of a Z-B or B-Z
junction 2d,. The presence of such conformations as energy—
minimal ones is already proved; see Eq. (31). The second
derivative of the twisting potential

d? w(z,[l —S(I-i)] if ¥, is equal to Eq. (4a)
P V= Tp — Tz (48)
‘ w} if V,; is equal to Eq. (4b)

is equal to w3 at every position i in the uniformly, negatively twisted conformations from the alternating B-Z conformation.
Therefore, the second derivative matrix ¥, . at such conformations is equal to Ve, The short range interaction potential for
small fluctuation of such energy-minimal conformatlons is represented by

[svi+nl
T {ri=7"+ 4T, /N + At} AT, <ozAr,—0}
= [ZVU + V2i]

N}
=Nle3 +N2ez +Jejl+ 20(

ArAr

.'rj] {r=7"+ AT /N} +

7= 7+ AT /N ( )ZAT +22

N\(rg — 75) + Ny(15 —Tz)+AT AT, AT,

ks ‘") +S3¥ 0y,
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(A + @3AT,/N) with the definition Eq.(24) for A is the con-
straining force for this specific conformation; see Eq. (32).
Here it should be noted that Eq. (49) is, of course, the same as
Eq. (45)with Ny = N, N, = N,,andj = J. Thus the term of
Ny =N,, N; =N,, and j = J in Eq. (46) must be modified
for the present case by extending the domain of integration
of AT, to include the range of 0 to — . However, this
modification does not change the final expressions of Egs.
(47a) and (47b). In the result, the partition function for case
(b) is represented by

Z: l’ZC,B + ZC,BZ! (50)

where the first and second terms are given by Egs. (44) and
(47), respectively.

It should be noted here that the configurational parti-
tion functions [Eqs. (44) and (47)} includes the case of linear
DNAs as a trivial case of B = 0; the long range interaction
potential ¥, is assumed here to originate only from the con-
servation of linking number for a closed circular DNA. Of
course, the combinatory factor C(N;,N5, j) in Eq. (47) de-
pends upon whether a given system is a linear DNA or a
closed circular DNA. In the next section, C (Ngz,N, j) will
be calculated specifically for a closed circular DNA, because
we are interested in B-to-Z transitions of a closed circular
DNA.

Before going further, it would be of interest to point out
here that the librational factor Z,, ;,, in Eq.(11) is just equal
to the configurational partition function for lattice vibra-
tions with a constraint described by the equation of motion
shown in the following; however, a zero-frequency transla-
tion mode that generates another energy-minimal conforma-
tion must be excluded for Z,, ;,. The continuous approxi-
mation for a position variable i is employed here to consider
interactions between phonons and junctions; the displacive
limit d,;=Cy/w,> 1 is assumed.

d2 d?
Ar(it) + [ i] Ar(it)
dr? drl(i)? ! ) = 7T
—C%%AT(i,t)—y(t):O, (51)
1

f di Arfi,t) = 0.

The constraining force u(z) is

ule) =~ f [df(l)z VUL’):TM_%ATU,:). (52)

If d 2V, /dr(i)* with 7{i) = 7"7*(i) takes the same value
irrespective of position i, the constraining force will be zero.
Then libration around such conformations is represented by
a simple form, Eq.(51) with 22 = 0, which does not explicitly
include the long range constraining force. This is the case for
libration around uniform deformations from the B and Z
conformations and from the alternating B—Z conformation
in case (b); the dispersion relation for this system is simply
represented by Eq. {A3) with nonzero wave vectors k 50 in
Appendix A. Libration around alternating B-Z conforma-
tions is also described by Eq. (51).d *V,;/dr* for the twisting
potential Eq. (4a) takes d *V,,/d7} = w}(1 — 8{[{i) — 7,/
(78 — 72)}) = &3 {1 — 8[ (i — i,)/(2d,)]} near i~i, where a

junction is located; Eq. (25) is used for 7{i). Thus the interac-
tions between phonons and junctions must be taken into ac-
count. Currie ef al.*® discussed such interactions by solving

Eq. (51) without a constraint of fdiAr(i,t) = O and therefore

with u = 0. However, in the present case, a constraining

force originated from the presence of junctions is introduced
as long range interactions into the system; see Eq. (52).

Therefore even for a simple potential like double quadratic
functions, if ;% 1, Eq. (51) that includes long range interac-
tions must be dealt with to estimate librational contribu-
tions. In general, the twisting potential V;; may not be repre-
sented by simple functions like the double quadratic
function Eq. (4a), and therefore d 2V,,/dr? with {1, = 7T}

may vary significantly at junctions and also take different
values at the Z form and B form. Then phonons may be
bound to or localized at junctions and Z or B regions. As a
result, it becomes difficult to determine each vibrational
mode and then to calculate the configuration partition func-
tion for such systems.

In the present formulation of librational contributions,
interactions between phonons and junctions are neglected;
see Eq. (45). Thus, strictly speaking, it is appropriate for the
case of d;=C,/w,%0(1), in other words, the case that the
nearest neighbor interaction energy between twists is com-
parable with or smaller than the twisting potential. Also,
phonons are treated to equally distribute over B and Z re-
gions by assuming that the twisting force constants for the Z
and B forms are the same. The case that the Z and B forms
have different twisting force constants will be easily dealt
with, if an Ising model is employed, i.e., if the limit of
d;=Cy/w,—0 is assumed; in the Ising model, each twist is
assumed to fluctuate independently. The formulation of the
configurational partition function based on the Ising Model
is discussed in Appendix B.

lll. COMBINATORY FACTOR C(N;,N,.2n,) FOR A
CLOSED CIRCULAR DNA

In this section, the number C (Ng,N;,2n,) of ways to
choose Ny B forms and N, Z forms with »n, regions in a
closed circular DNA will be calculated; in a circular DNA,
the number of B~Z or Z-B junctions must be equal to the
number of B or Z regions and is represented here by n,. The
combinatory factor is formulated for two cases; (a) a simple
case in which any base pair can take both the B and Z forms,
and (b) another case that only a part of DNA can take the Z
form as well as the B form. In the latter case, it is supposed
that a DNA segment consisting of NV, base pairs that can take
the Z form is inserted into a host DNA with the length
N,(= N — N,) that can take only the B form; for simplicity,
the number of such inserted segments is assumed to be only
one. The case (b} is considered because most experiments
have been performed under such circumstances.

As stated in Sec. 11, the repeating unit of the Z helix is
not a single base pair, asitisin 4 and B DNA, but rather two
successive base pairs (pyrimidine-purine pair).*~’ Although
the structure of a B—Z junction is not known, it might be
better to assume that each Z conformational region in alter-
nating B-Z conformations consists of even number of base
pairs. In this section, the combinatory factor will be calculat-
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ed for each case in which a Z region consisting of odd num-
ber of base pairs is either accepted or not accepted.

Let us define a generating function for C (i, j,k ) as fol-
lows:

&=y > ¥ Cli, kXXX (33)
i=0j=0k=0
This generating function can be represented as the sum of all
possible configurations consisting of alternating Z and B re-
gions with various lengths separated by Z-B and B-Z junc-
tions with a fixed length. First let us deal with the case that
any base pair of DNA can take the Z form.

A. Case (a) in which any base pair can take both the B
and Z forms

If Z helices consisting of odd numbers of base pairs are
permitted, Eq. (53) will be represented by

g =gsll) +gz(1)

+ i 22 X5 [X,82(mz)X,85(m5)]™ "~ 1

n‘,= l P
>0
i+ jompg

XX;82(mz)X,X §

+ Zz Xz [XJgB("119)-’Yng(”lz)]nl—1

ij>0
i+ jomgz
XX,8p(mp)X,; X7 |, (54)
where
kil ) xr .
gm=> X, = N with oe{B,Z }. (55)
i=m — A, '

Ifit is assumed that each Z helix must consist of even num-
ber of base pairs, the summation of / and j in the fourth term
of Eq. (54) will be restricted in such a way that (i 4 j) must be
even. Also, Eq. (55) will be modified as follows:

_ = 2i _ X ; i

8z(mz) i=§z/2Xz I—x2
m_, and my are the minimum lengths for Z and B regions;
because each junction is regarded to consist of the d, Z forms
andd; B forms, m, >2d,; and my >2d,. The first and second
terms in Eq. (54) are generating functions for configurations
consisting of B forms only or Z forms only. The third and
fourth terms that represent the sum over distinguishable al-
ternating B-Z conformations are formulated by assuming
that the origin of the base sequence in this closed circular
DNA can be identified. By expanding Eq. (54) in a series of
X;, Xz, and X, the combinatory factor can be calculated.

Nonzero elements of the combinatory factor
C,,(Ng,Nz,2n,)for the case that Z helices consisting of odd
numbers of base pairs are permitted are

(56)

C,(nymg +i,nymy +j, 2n,)

_ny =1+, —1+)) (nJmB +i+nmg +j)

it(n, — 1)t (n, — 1! n,
(57)
C, (N,0,0) = C, (0,N,0) = 1,
where
nmy+i+nmyz+j=N, mg>2d,, mz>2d,,
n,>1, i,j>0. '

If each Z helix is assumed to consist of even number of base
pairs, Eq. (57) will be modified as follows; m_, must be even in
this case.

Co,{nymp +i,nymz +j, 2n,) =
0

1 for even N
Ca ,0,0) =1, a, \Wsd¥,U) = [ .
V.00 =1, C,ON0 0 for odd N
B. Case (b) in which only a part of DNA can take both the
Band Zforms

Next, let us consider the case in which only a specific
segment with the length N, in a closed circular DNA with
thetotallength N = N, + N, can take the Z form,; for simpli-
city, the number of such segments is assumed to be only one.
The generating function of Eq. (53) for this case is represent-
ed by

g=Xy {gB(O) + i, 25(0)[X,82(m2)X,85(m5)]™ "

ny=

XX;82(mz)X,85 (O)}: (59)

(ny =1+ i)l {n, — 1+ j/2)! (”JmB +it+nmg+j
Muy — (/20 (n, — 1)

) for even j
n,

b

for odd j
(58)

where N,>m, is assumed; g, and g are given by Eq. {55) or
(56). The first term in Eq. (59) represents a generating func-
tion for configurations consisting of B forms only and the
second term for configurations of alternating B—-Z confor-
mations that contain a fixed B-form region with the length
N,.Then, if Z helices consisting of odd numbers of base pairs
are permitted, nonzero elements of C,, will be

Gy, [N+ (n; —N)mp +i,nymz +j, 20, ]

_ny+0tn, =14}
T il (n, — 1)

>

(60)
C,,(N,0,0) =1,
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870 Sanzo Miyazawa: §-to-Z transitions in DNA

where
(nj—l)m3+i+n1mz+j=N2, N1+N2=N,
mp>2d,, mz>2d;, n;>1,ij>0.

If each Z helix is assumed to consist of even number of base
pairs, Eq. (60) will be modified as follows; m, must be even in
this case.

Cy, [Ny + (1, — mg +i,n;my +j, 20, ;

max(n;} N — (mg + mzn;

ZC(Lk)'Z[ W,(N,0,0)+ W, (O,N,0) + Z Z

ny=1 i=0
where
max(n;) = | N/(my +my) |
and for case (b),
max(n)) Ny + mp — (mg + mzn;
ZC(Lk)’z(Wb(N’O:O) + nz_l jzo

where
max(n,;) = | (N, + mg)/(mg + my) IE

n 4y =142
={ it (/2N (ny — 1) evenJ
0 for odd j

(61)
C,,(N:0,0) = 1.

In the result, from Eqs.(33), (44), (47), and (50), the con-
figurational partition function is represented as follows:

For case (a),

W, [nmpg+(N—nmg —n;m; —J)nymz +j, 2”.1]] s (62)

W, N+ (n; — Ymg + [N, —(n; — Umg —n;mz —jl,nmz +j,2n,}), (63)

The statistical weight of each configuration, W, for case Ie{a,b }, is given by

2

@
W;(Ng.Nz,2n,)=2Z ‘(),‘P (_'—9""—

w5 + B}

172
) C,(Ng,Nz,2n;) exp [ —B(Ngeg + Nzez + 2”191')]

NECES N exp[ _ Bt +5) (Tw _

w(z)(NBTB + Np7z +2n,7,) + B%Lk )2]

27N wg + B3
X [ P L T S 2 )2] (64a)
exp| —f—————(L;y — Ngrg — Ny75; —2n;7;.
p 2(@(2) +B(2,)N k BTB zTz JTr
w% 172
=Z%P(2—“—2‘) C;(Np,Ny,2n,) exP[ —B(Ngep + Nyez + 2”191')]
oy + Bj
X [ P L T S 2n )2] (64b)
exp| - p————m——— ~ Nprg —Ny7ry — 2057, )° |,
p 2((0(2) +B(2))N k BT z7z gTy

The combinatory factors C; are given by Eqs.(57), (58), (60),
or (61). In the present model, 7,. is equal to zero, because the
twisting potential is assumed to be Eq. (4a). Z 2, is the con-
figurational partition function for harmonic lattice vibra-
tions or phonons and given by Eq. (43). It should be noted
here that although Eq. (64b) is similar to formulas®>-?’ in
which the free energy of a closed circular DNA with a given
linking number is evaluated by the empirical function,?*2* it
is rather derived here by explicitly taking account of twisting
and writhing potentials. For the case in which the B and Z
forms have different twisting force constants, the statistical
weight W, has been calculated in the Ising limit
d;=C,/wy—0; the result is given in Appendix B.

IV. STATISTICAL CHARACTERISTICS OF 5, Z, AND
ALTERNATING B-Z CONFORMATIONS

Before discussing B-to-Z transitions in a closed circular
DNA, let us consider conformational characteristics of each
of B, Z, and alternating B-Z conformations. From Eq. (44a)

I

or (64a), the statistical average of the total twist over the
ensemble of B-form DNA or Z-form DNA is equal to

Bg(Ly — N7,

0t + B}

Angle brackets with the subscript o represent the statistical
average over the ensemble of the o-type of conformations;
those without a subscript simply represent the statistical
average over all conformations. The right-hand side of the
above equation represents the shift of twist from the stan-
dard twist of the B or Z form due to the linking difference
(L, — N7,). Also the linking difference causes the writhe of
DNA that leads to the supercoil formation. The statistical

average of the writhing number would be obvious from Eq.
(8), i.e.,

(T)), +{W,), =L, withoe{B,ZBZ). (66)

If the twisting force constant @3 is much larger than the
writhing force constant B3, most of the linking difference
will be transformed into the writhing number. These equa-

(T,), — Nr, = with oe{B,Z}.  (65)
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Sanzo Miyazawa: 8-to-Z transitions in DNA 871

tions describe how the linking number is distributed between
the writhing and twisting numbers. Likewise, the statistical
average of the total twist in alternating B—Z conformations
can be calculated from Eq. (64a). A general form including
Eq. (65) as a special case is

(T.), = 03 {(Np7p + Nz7z + 2n,7,.)), + BGL,
w/o (03 +B(2)

with oe{B,Z,BZ}. (67)

Here it should be noted that Egs. (66) and (67) also represent
the statistical averages of the twisting number and the writh-
ing number over all conformations because both equations
can be applied to conformations of all types, i.e., B, Z, and B~
Z.

The statistical average of N, over alternating B—Z con-
formations would be approximated by the most probable
value of ¥,.

[ —In W (N —(Nz)5z,{Nz)52:2(n;) 5z)]

'znllvin[ —In Wi{N — NZ;NZ,2<nJ>BZ)]' (68)

If m, < (Nz)pz <N,, then (N, )y, will satisfy

J

Nleg —
(T,)sz — ((N7p + N7z + 21,7,V pz — —2—’;——
(75 — 72)

N a
~ nC,(N—N_,,N,2n
Bf"tz)(Ta—Tz) [aNz[n i e J)]

Nl(es —ez) N [ J

T,)pz~L, — -
To)az , Btz)(TB—Tz) BBty — 7z) |ON,

Equation (72a) indicates that the statistical average of the
total twist over alternating B-Z conformations deviates
from its mechanically stable point (Np7y + Np75
+ 2n,7,.) 5z due to the contribution of entropy; the twists
Ty and 7. of Band Z forms at the mechanically stable point
differ from the standard twists 7, and 7, of the B and Z
forms, respectively, unless e, is equal to ep.

Another interesting feature is that the variance of the
total twist in a closed circular DNA is not the same as that
expected for a linear DNA. From Eq. (64a), the variance of
the total twist is the same irrespectively of conformational

types.

(T = AT) o0 = (W, — (W), )y = ——2

B(w; + Bj)
with oe{B,Z,BZ }. (73)

Long range interactions due to the conservation of linking
number that is specific to closed circular DNAs reduce the
variance of the total twist as if the twisting force constant
increased from w3 to (w3 + B 3). This is consistent with the
experimental fact®’ that a supercoiled DNA is torsionally
more rigid than a linear DNA.. It should be noted here that
Eq. (73) is applied to the ensemble of closed circular DNAs
with the same linking number. If the ensemble of closed

]Nz = (N2 pzns=(nppz

[In C/(N — Nz,Nz,2nJ)]]

3
[W;[ —1/8In WI(N—Nz:Nz’ZnJ)]]

n;={nypz

- [a;z [ —1/81n C,(N — NZ,NZ,Zn,)]]

ny=(n)pz
oiB}
+ (e, —eg) — —————— (1, — T
(ez 8) (w%,+B§)N( z 8)
X[Lg —Nrg —Nzlr; —75)— 2(”1)8271']
~0. (69)

Likewise, the statistical average of n, would be approximat-
ed by the most probable value of n;.

[ —In W,(N — (Nz>BZ9(NZ>BZ’2(n.I>BZ)]
~min[ —In Wy(N — (Nz)5z,{Nz)pz,2n,)].  (70)

If 1< (n,)z, <max(n,),(n,)s, will satisfy the following
equation:

a3
(21— 118 Wil — N Nz 2,1 ~0.

J Nz=(Nz)pz
(71)

Therefore, in case of 1 < (N )z, <N,, Eq. (67) for al-
ternating B-Z conformations can be approximated as fol-
lows by using Eq. (69).

il [ =(Tw)sz — ((Np7s + Nz7z + 21,7, ))52]

(72a)

(72b)

Nz = (N2 pzn;=(n;)pz

I
DNA:s is in equilibrium with regard to the linking number,
the variance of the twisting number must be larger than Eq.
(73) because of the variation of the linking number, and must
be equal to that for a linear DNA.

Let us suppose that the ensemble of closed circular
DNAEss is in equilibrium with regard to the linking number.
The partition function for this case is equal to the sum of
Z(L,)over the linking number L, . Equation (64b) indicates
that the equilibrium ensemble of closed circular DNAs over
the linking number obeys a Gaussian distribution:

E= (Ng7p + Nz7z +2n,7;.),

—_—— N

(Lk - Lk )2 =—= (74)
Px

where
w3 B3
K=
(w5 +Bg)

Here the bar on variables represents their statistical averages
with regard to the linking number. This is consistent with the
experimental fact>>?* that the equilibrium ensemble of to-
poisomers with different linking numbers, which is generat-
ed by using nicking-closing enzymes, obeys a Gaussian dis-
tribution of the linking number whose variance is almost

(75)
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872 Sanzo Miyazawa: B-to-Z transitions in DNA

proportional to the total length of DNA, indicating that the
second order approximation [Eq. (9)] for the writhing poten-
tial is adequate.

Then, the statistical average and the variance of the
twisting number in the equilibrium ensemble of a closed
DNA with regard to the linking number are, of course, equal
to those for a linear DNA.

05 {((Ngm3 + N7 +2n,7,.)) + B2L,
(T,) =
C')o +B(2>
= ((Ng7g + Nz7z +2n,7,)) = L, (76)

(T, = TP

___ N (Bé(Lk—T;))z_ N
B (@} + B}) ) + B} B @}

Likewise, the statistical average and the variance of the
writhing number are

N
BB}
Thus the sum of the variances of the twisting number and the
writhing number is equal to the variance of the liking num-
ber; in this case, the twisting number and writhing number
are independent variables.

(W,) =0, (W, — (W,)])= (77)

V. 5-TO-Z TRANSITIONS BY CHANGING THE LINKING
NUMBER

Transitions between B and Z conformations in a closed
circular DNA may be defined as the structural transition
between overall B or Z conformations and alternating B—-Z
conformations with a certain number of Z or B forms;
changing an external variable beyond the transition point
causes a gradual increase of Z or B forms. Thus, the order
parameter for this kind of transition is not the proportion of

the number of base pairs in the Z form (N, )/N,, but that ofl

alternating B—Z conformations {(N,)/{(N) zz; the former
may be the order parameter, if transitions are induced in a
linear DNA by changing environmental parameters such as
the salt condition that would correspond to changing the
relative energy (e, — ej) of the Z form to the B form. Al-
though such transitions in a closed circular DNA may be
induced by changing one of the external variables, we will
here deal with those induced by changing the linking num-
ber; specifically B-to-Z transitions from overall B conforma-
tions to alternating B—Z conformations.

The transition point for the B-to-Z transition may be
defined to be where the free energy of overall B conforma-
tions is equal to that of alternating B~Z conformations,
which is then approximated by the free energy of the confor-
mations with N7 and n; equal to their most probable values.
In other words, the following equation would approximately
be satisfied at the transition point:

BAF({Nz) pz({x:)), {n;)pz({x:}), {x:})

=[ —In W, ({Ng)pz, (Nz) 52, 2(n;) 5z)]
— [ = In W,(N, 0, 0)] ~0. (78)

The statistical weight W, is given by Eq. (64b). In this sec-
tion, {N,)p, and {(n,),, should be regarded as the most
probable values of N, and n, rather than their statistical
averages. The free energy difference AF between overall B
conformations and alternating B~Z conformations is a func-
tion of external variables {x;}; {(N;)p, and (n,) 5 are in-
ternal variables that are functions of {x,}. The external var-
iables {x,;} may be chosen as

{x.}={ALy, N/(Bx), N, Blez — e5), Bes. }, (79)
where the linking difference AL, is defined as
AL =L, — Nr. (80)

k is already defined by Eq. (75). The variables N, is the num-
ber of base pairs that can take the Z form; in case (a), N,
might be regarded as V. The linking number at the transition
point is termed the transition linking number and represent-
ed by L, , in the following.

The explicit expression of Eq. (78), obtained by substituting W, by Eq. (64b), is

(Ly,, — NTB)Z%(<NZ>BZ(TZ ~7p) +2{n;) pz7;)

~1In C{{Np) sz, (N2) 5z, 2<nJ)BZ)]

n _I_V_ [(N2)pzBlez — eg) + 2{n;) sz Pe,.
Br (Nz)pzlrz —75) + 2(n,) gz 7s

(81)

The transition linking number L, , might be calculated by solving the simultaneous equations, (68), (70), and (81); however, it
will be difficult to obtain L, , for general cases, because of complicated forms of the combinatory factor. In the following, we
will consider the dependencies of the transition point on the external variables given by Eq. (79).

First let us consider the dependencies of the transition linking number L, , on the other external variables x;. From Eq.

(78),

(aALk, ,) (aBAF) 3ﬂAF
a'xj {x|x; ALy "j foe,], 7 x; aALk 1/ {xilx#AL :]

(82)

Unless x,, is N,, the partial derivative of SAF by an external variable x, will be

(aBA _ (BBAF)
a'xk £l %} a'xk (Nz)pz: {n)) pz (X154 i)

because

(83)
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( JPAF ) (c?(Nz)Bz) _0 (84)
N g Jnpoe xd N 0% Jimprwng

( dPAF ) (a(nJ)Bz) _o (85)
Iy b SNz (s \ IXp [ (ximn

Equations (84) and (85) are satisfied because either the first factor or second factor is zero; because (N )z, and {n,) », are
defined here as the most probable values of N, and n,, the first factor in Eq. (84) will be zero if m, < (N, ) 5z < N,, and that in
Eq. (85) will be zero if 1 < {n,) 5, < max (n,), otherwise the second factor in their equations will be zero. Refer to Egs. (68)—
(71). In the result, the left-hand side of Eq. (82) becomes

<aALk, ) _(9AL,,

%, JixpxtALy %) —( Ox, )(Nz),,z, () pz (X)X ABLy 4 %)
Incaseof x;, = N,,if mz<(N;)}z; <N,and 1<(n, )z, < max (n,), Equations (84) and (85) and then Eqs. (83) and (86) will be
satisfied; otherwise the following equation will be satisfied instead of Eq. (83).

(22ar (22r
ON, JisixtNgy \ O Ny ) Ngsa npa tmdxiidiy)

(86)

(87)

The inequality in Eq. (87) comes from the fact that (N ) g, and (n, ) 5, are the most probable values of N, and n;. Then, from
Eqgs. (82), (83), and (87), the following equation is obtained for the case of (N}, = N, or {n,) 5, = max (n,):

(aALk, ,) S (8AL,(, ,)
ON, Jixlx#4L,,, N} N ON, [ (NDpz (npyaz (x)x44Ly, ,, N}
because the denominator in the right-hand side of Eq. (82) is supposed to be positive;

aBA Bk
= — —(N, — 2 . >0. 89
(c?ALk L ) N (NZ)pz(Tz —75) + 2(n;) pz 75 > (89)

(88)

Equation (89) simply represents that reducing the linking number is favorable to more negatively twisted conformations with
Z forms than overall B conformations. Equations (86) and (88) indicate that the transition linking number L, , as a function of
(Nz) sz and (n;) 5, takes a maximal value at (N ) z(4L, ,)and {n,) (4L, ,).

Now let us evaluate the dependencies of the transition linking number on the external variables from Eqgs. (81) and (86) or

(88).
(a(Lk, . — N7p) ) - [(N2)szBles —ep) + 2(n,)pzBe; —In Ci({Ng) pz, {Nz )5z, 2({n;) 57)]
IN /(Bk) Nz Blez — ep), Bey. (N2)sz(Tz — T8) +2(n;) 527,
The right-hand side of Eq. (90) will be negative unless N, is so large that the combinatory entropy (the third term of the
numerator) overcomes the short range interaction energies (the first and second terms); the total short range energy is
supposed to be positive. On the other hand, the dependency of the transition linking number density on the DNA length is
simple.
(L. — NTB)/N) 1
- ~ — ——((N. T, —Tg)+ 2{n 7,.)>0. 91
( dN N, Blez — ep), Bey B IN? (Nz)pz(Tz — 75) (n;)pz75) (91)
The above equation indicates that as DNA becomes long, the density of the linking difference at the transition point always
increases. The second term in Eq. (81) is the asymptotic form of AL, , in the limit of large N. The dependence of L, , on N, is
(a(L,“—NrB)) > —N
N, N/, Blez—ea Ber PR({NZ) pz(Tz — Tp) + 2(n;) pz7;)

(90)

x [ aj’vz In Cy((N3 ) 52> (Nz) 522 21 52) >0, 92)

(N2 sz (np pz

Here it should be noted that unless (N, )z, = N, or {n,), = max (n,), the equality will be satisfied in the equation above.
The right-hand side of the above equation must be positive because the combinatory entropy always increases as N, increases.
Thus, the transition linking number increases as N, increases. Likewise, the dependencies of the transition linking number on
the structural parameters of DNA such as fle; — eg) and Be;. are obtained as follows:

(a(Lk,t *‘NTB)) ~ N (Nz)pz <0, (93)

B ez —ep) /Nngo. Nue,  BK ({NZ)pz(Tz — Tp) +2{n;) 527;')

(a(Lk,t - NTB)) N 2(n;) 52 <
dpe;. NG, NuBlez—en  BK ({N2)pz{Tz — 75) + 2{n;) p27;)

Equations (93) and (94) may be obvious; since the increase of Ble; — e;) makes the Z form unstable, and that of Be,. is
unfavorable to the formation of a B~Z junction, large twisting stress is necessary to induce the B-to-Z transition.

0. (94)
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Next, let us consider the dependencies of the internal variables, the most probable values of N, and n;, on the external
variables at the transition point. If m; < (N3 )z, <N, and 1 < (n;) 3, < max (n;)atL, = L, ,, the partial derivatives of the
right-hand side of Eq. (81) with regard to the variables (V) 5, and (#,) 5, must be zero at L, = L, ,; refer to Eqgs. (86) and
(88).

(B(Lk, ' NTB)) ~0

NV bz ) npsn ximkarey

(95)

(a(Lk,, — Nry) o

a(nJ>BZ )<Nz>sz» (x| # ALy, )
The following equation is obtained by partially differentiating these equations by an external variable x,&{N /(Bx), N,,

Blez —eg), Be;- .

3 (Nz)Bz/axj) _1(52ALk,,/3xj8(Nz)Bz)
(8 (n;) pz/9x; ~M FAL, ,/0x;0(n;) 5z ) 6)
where
____(‘92( ‘“ALk,:)/aUVz)%z az( _ALk,t)/a(n.I)BZa(NZ)BZ) (97)
o 32( - ALk,t)/a<NZ>BZa(nJ)BZaz( - ALk,t)/a<nJ)§Z )

The second derivative matrix M of (— 4L, ,)at L, = L, , is positive definite and then the inverse matrix of M is also positive
definite; Eqgs. (86) and (88) indicate that the transition linking number L, , as a function of (N;), and (n,) 5, takes a
maximal value at {N) pz(4L, ,)and {(n,;) sz(AL, ,). Incaseof x; = B (e; — ep), itis obvious from Eq. (93) thatif 7,. = 0, the
second factor in the right-hand side of Eq. (96) will be equal to zero; therefore, the left-hand side of Eq. (96) must be zero.
If TJ! = 0,
( 9 (Nz)pz(ALy, ) )
dBlez —ep) /n/pa, Ny pe,
(a (nJ>BZ(ALk, :))
dBlez —eg) /N/gu, N ey
In other words, if 7;. = 0, the values of (N ) 5 and {1, ) 5 at the transition point will not depend on Ble, — e;) at all; in the

present model, 7;. is equal to zero.
On the other hand, the second factor in Eq. (96) in case of x; = N /(Bx) is

~0, (98)

~Q. 99)

32AL, /N /BRNON, ) g Piry — 75) >0,

2N
(100)
2 —px
d2AL, /3N /(Br)I(n,) pz~ 5 27,..
Then, the following relationship may be obtained from Eqgs. (96) and (100):
Ifmy, <{Nz)pz <Nyand d{(n,) 5, /IN=00r my <{(N,) gz <N, 1 <{(n,)p, < max(n,;),and 7,. =0,
ad (N, AL
( (Nz) 5zl k,t)) 0. 01)
AN /(Bx) N, Bley — ep), Be,.

The above equation indicates that (N, ), increases as N /{Bx} increases; however it must converge to a constant, because
itisbounded by N,. If¢; is large positive, there will be a marginal value N, ,, for N, below which the most probable number of
N at the transition point is equal to N,; if N, S N, ,,, then (N ) 5 =<N,. The marginal value N, ,, is the value of N, such that
the derivative of L, , by (N ) 5, takes zero at (N, )z; = N,, or (N, ), = N, satisfies the simultaneous equations (69) and
(81). Thus, N, ,, will be estimated by solving Eq. (95), [dL, ,/3{N~ )z ] = 0, or the simultaneous equations (69) and (81) with
C,~(N, — (N3) gz + 1) and {n,) g, ~1, if case (b), in which only a segment in a circular DNA can take both the Z and B
forms, is assumed:

— 2 v 1 v
N:,Mz——N——(—H[1+—25’f‘12]—vl”-[2ﬂe,,—ﬁ(ez—es) 2 ]]/Z)— =

Brlry — 73 )2 Tz —7Tg Tz —Tp
27, 27,
— (2391' —Blez —eg) . ) - T (102)
N/Bo—o Tz —Tp Tz —Tpg
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In case of (N, )zz~N, and {(n,)pz~1, Eq. (81) is trans-
formed to

(Li, e — N7g)d [ Ny(12 — 75) + 27, ]

i(NzB(ez —eg) + 2Be;. ) (103)
B\ Nifrz —15)+ 27,
In Ref. 26, the marginal value N, ,, was estimated by com-
pletely neglecting the contributions of the combinatory en-
tropy; Eq. (81) without the term of In C,, was used. There-
fore, N, ) was estimated to be proportional to the square
root of NV; if In C, =0, Eq. (102) would not have the terms,
— 1 in the bracket and 1 in the square root. Equation (102)
indicates that N, ,, converges to a constant in the limit of
large N rather than increases with the square root of N.
Therefore, on the contrary to the claim in Ref. 26, the
expression equation (103) for the transition linking number is
much limited to use.

It should be noted here that Eqgs. (78), (81), (82), (86),
(88), and (90)—(103) are approximate relationships, because
the free energy of alternating B—Z conformations is approxi-
mated by that of the conformations with V, and n; equal to
their most probable values; this approximation might be ina-
dequate for large , because the free energy curve of alter-
nating B-Z conformations becomes shallow at the minimum
(Nz)pz-

In this section, the B-to-Z transition induced by chang-
ing the linking number has been defined, and the dependen-
cies of the transition point on the external variables have
been examined. Physical meanings and interpretations of
these dependencies will be discussed in the next section with
examples of numerical results for some cases.

—+

V1. NUMERICAL ANALYSES OF SUPERCOILING-
INDUCED B-TO-Z TRANSITIONS

In the present model, there are four parameters to de-
scribe a system; e.g. Ble, — e), Be; Bw?k, and BB 2, besides
basic parameters 75 and 7, and trivial ones such as mz and
mg; 7, is treated to be zero. However, unless the distribution
of the twisting number or the writhing number is concerned,
only three parameters will be required to specify; see Egs.
(62), {63), and (64b). One of interesting parameter sets would
be Ble; — ez), Pe,., and Bx=B[w;B}/(@} + Bj)]-

The value of Bx/2 was estimated to be in the range of
920-1560 from the measurements of Boltzmann’s distribu-
tion of topoisomers with different linking numbers, depend-
ing upon experimental condition;*>* much lower values
530 and 900 were obtained from ethidium binding.!¢2%!
For the twisting force constant o7, Thomas et al.>® obtained
Bw? = 3700 [(1.29 4 0.10)X 10~ *° erg cm/rad?] from the
kinetics of DNA twisting measured by fluorescence depolar-
ization of ethidium bromide intercalated into DNA, and
Millar et al.>” obtained Bw? = 4100 [(1.43 + 0.11)x 10~ *°
erg cm/rad?] for the linear DNA of calf thymus and 5600
(1.95 10~ ' erg cm/rad? for a closed circular DNA of the
plasmid pBR322 from the same kind of measurements on
the basis of the elastic model developed by Barkley and
Zimm®®; the helix rise per base pair is assumed to be 3.4 A
and T = 293 K is used. Shore and Baldwin* obtained fw?

= 6840 (2.4 X 10~ % erg cm/rad?) from measures of the cy-

clization probability of EcoRI restriction fragments as a
function of DNA twist. The writhing force constant B3
might be estimated from those estimates of
Brx=B[w3B}/(w} + B})] and Bw}; BB 3~3700 from Sk/
2~920 and Bw’~3750, and BB 2 ~5700 from Bx/2~1560
and Bw} ~6840. On the other hand, Eq. (73) indicates that
the effective twisting force constant of a closed circular
DNA is equal to (@3 + B32) rather than w}. Therefore, the
values of the twisting force constant obtained by Millar et
al.? for the linear and circular DNAs indicate SB2~1510
which is significantly smaller than the estimates from the
values of Bx and Bw?. Vologodskii et al.*! calculated the
equilibrium distribution of the writhing number in random-
ly generated closed chains consisting of Kuhn segments and
then claimed that the variance of the writhing number
equaled approximately half the observed variance of the
linking number, indicating that the writhing force constant
is the same order as the twisting force constant; from the
variance of the twisting number, the twisting force constant
was estimated to be Sw? = 4700. On the other hand, it was
reported®® that the twisting force constants for synthetic
DNA fragments with different base compositions were in
the range of B} = 880 (9 10~ erg) to 39 000 (4x 10~
erg), significantly depending on the base composition.

In the following, three parameters Sle, — e;), Be;.,and
Bk will be estimated by analyzing experimental data, and the
characteristics of B-to-Z transitions induced by changing
the linking number will be discussed in detail. The standard
twists of the B and Z forms 7, and 7, will be assumed in the
following tobe 1/10 and — 1/12 that were both determined
from single-crystal x-ray analyses.*”’
A. Analyses of experimental data; estimation of
Ble; — ep), Be,, and Bx

Peck and Wang?® analyzed supercoiling-induced B-to-
Z transitions by two-dimensional gel electrophoresis of to-
poisomers containing an alternating G-C segment
d{pCpG), - d(pCpG), inserted at BamHI site of the plasmid
pBR332. In their experiments, DNA topoisomers with dif-
ferent linking numbers were resolved by first running a mix-
ture of topoisomers in one dimension and then electrophore-
sis in the direction perpendicular to that of the first
dimension was carried out after the gel was equilibrated in
the buffer containing chloroquine in which Z forms in the
topoisomers revert to the right-handed structure. A pair of
topoisomers that had the same mobility but either one of
which contained Z forms in the alternating G—C insert were
obtained; the linking numbers of these topoisomers can be
identified. Let us represent the linking numbers and twisting
numbers of this pair of topoisomers by L, and T, for topoi-
somers with Z forms, and by L ; and T}, for topoisomers
whose conformations are the B form. Then, analyses can be
done by assuming that a pair of topoisomers with the same
gel mobility have the same writhing number.

L, —AT,)=L;—(T,). (104)
The statistical average (T';,) in the B-form DNA and the
statistical average (T, ) are represented by Eq. (67). There-

fore, the quantity (L, — L ;) observed in their experiment is
represented as follows:
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Ly —L;=A(T,)—(T,)=

@} ((NpTp + Np7z + 2n,7,.)) +B3L,

_ @iNry +B3L;

w? + B}

_ @5 + B}

2
0

where (T, ) 5 is the statistical average of the total twist over
only B conformations and given by Eq. (65); (T, ), {(N.),
and (n,) are statistical averages over all conformations.
Equation (105) indicates that the observed quantity
(L — L) will be proportional to the statistical average
(N2) of the number of Z forms, if 7;. is equal to zero as in
the present model; this quantity that is a function of L, var-
ies in the range from zero to N,(r, — 75). Thus, the quantity
(L, — L }), which was measured by Peck and Wang,? serves
as a measure for supercoiling-induced B-to-Z transitions.

Peck and Wang® analyzed such B-to-Z transition
curves on the basis of an Ising model, in which the number of
Z regions in alternating B—Z conformations was simply ap-
proximated to be one. They treated all of 7., e¢,., and
(ez — ep) as independent parameters, and obtained 7.

= — 0.4, which is almost twice the value of (7, — 75), by
fitting theoretical transition curves to the experimental data;
Be, = 8.6(5.0kcal/mol),and B (e, — ey} = 0.57(0.33 kcal/
mol) were also obtained with Sx/2 = 1100 determined from
other experiments. The large negative value of 7,. is incon-
sistent with the present model in which 7,. is approximated
to be zero. Here it should be noted that 7,. is not the mean
twist of a B~Z junction and that the twist per base in a B—Z
junction is equal to 7, which is nonzero in the present mod-
el; see Table I and Eq. (19) for the definition of 7,.. Peck and
Wang?® have claimed that there must be a substantial un-
winding at the B—Z junctions, because the maximum value
of [(Nz M7z — 75) + 2{n, )7;.] approaches a value signifi-
cantly larger than N,(r, — 75), the value expected when the
inserted G-C segment wholly changes from the B form to
the Z form. However, in other similar experiments, the max-
imum value of [(N; )(7z — 75) + 2{(n;)7,.]is almost equal
to the expected value N,(7, — 75), indicating 7,. ~0; see Ta-
ble I in Ref. 15. Peck and Wang?® assumed that the number
of base pairs that could take the Z form, i.e., NV,, was equal to
the length of the inserted G—C segment. Figure 2 shows the
base sequence*’ of pBR322 from 351th to 400th base posi-
tion near the cleavage site of the restriction enzyme BamHI
where the G—C segment was inserted. Four bases of alternat-
ing pyrimidine—purine d(pTpGpTpG), which may take the
Z form,*® are located just before the cleavage site of BamHI.
Therefore, it might be reasonable to assume that N, is equal
to the total length of the inserted G-C segment and the
neighboring segment d(pTpGpTpG). Then, the transition
curves obtained by Peck and Wang?® might be consistent
with 7,. = 0; see Eq. (105).

Figures 3(a) and 3(b) show the experimental data of
Peck and Wang?® and B-to-Z transition curves of Eq. (105)
that have been calculated by using the partition function of
Eqgs. (61), (63), and (64b) with myz = 1 and m, = 2. In Fig.
3(a), a parameter Fx/2 is assumed to be equal to 1100 and
three parameters 7;. Ble, — ), and Be;. have been opti-
mized as done by Peck and Wang?®® by curve fitting to their

®((T,) —(T,)5) = (N, Mrg — 75) + 2{n, )75,

wy + B}
(105)

r

experimental data; 7,. = — 0.16, Ble; — ez) = 0.60, and
Be;. = 1.51 are obtained with the root mean square error
0.29. The value — 0.16, which is about half of — 0.4 report-
ed by them, has been obtained for 7,., chiefly because of the
difference of the value of N,. On the other hand, if Bx is
regarded as a variable to be optimized, one will obtain almost
same goodness of fit, even though 7,. is fixed to be zero.
Figure 3(b) shows the case in which 7. is fixed to be zero and
three parameters including Bk instead of 7, are optimized,
Ble; —eg) =0.84, Be; = 8.28, and Px/2 = 1490 are ob-
tained with the root mean square error 0.25. The standard
twists of the Band Z forms 75 and 7 are assumed here to be
1/10 and — 1/12 which were both determined from single-
crystal x-ray analyses*~’; Peck and Wang?® assumed 7, to be
1/10.5. In these analyses, it is assumed that each Z region
consists of even number of base pairs. If Z helices consisting
of odd numbers of base pairs are permitted, one will obtain
slightly but insignificantly different values for the param-
eters. If Eqgs. (60}, (63), and (64b) are employed with my = 1
andmz = 1,7, =0.17,B(e; — ez) = 0.60,and Be;. = 7.91
will be obtained with the root mean square error 0.28 for the
assumed fBxk/2 = 1100, and Ble; — ez) = 0.88, Be,. = 8.88,
and Bk/2 = 1550 will be optimized with the root mean
square error 0.25 for 7,. = 0. Although a definite conclusion
cannot be drawn from these limited experimental data, the
present model in which 7. is assumed to be zero might be a
good approximation, giving another interpretation of the ex-
perimental data reported by Peck and Wang.?

Here it should be noted that DNAs with the insertion or
deletion of a few base pairs that are not in an alternating G-C
block are treated® as if their length were the same. As a
result, the linking differences (L, — N) of plasmids in Fig.
3 take values as if the linking number could take nonintegral
values. On the other hand, in all theoretical curves of B-to-Z
transitions calculated here, the linking number is treated as
if it could take nonintegral values.

In the following, the characteristics of B-to-Z transi-
tions will be examined by numerical calculations; mainly

360 370 380 390 400
TCATGGCGAC CACACCCGTC CTGTG-GATCC TCTACGCCGG ACGCATCGTG

G-GATCC
BamHI cleavage site

FIG. 2. Base sequence (Ref. 42) of the plasmid pBR 322 from 351 to 400 near
the cleavage site of the restriction enzyme BamHI. Plasmids used by Peck
and Wang (Ref. 25) were generated by inserting an alternating G—C segment
d(pCpG), *d(pCpG), into the BamHI cleavage site that is shown by arrow
together with the recognition site. Four bases of alternating pyrimidine-
purine d(pTpGTpG), which may take the Z form (Refs. 8 and 9) and are
located just before the BamHI cleavage site, are underlined.
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FIG. 3. Supercoiling-induced B-to-Z transitions in closed circular DN As of
plasmids containing d(pCpG), *d(pCpG),, . The quantity measured for those
plasmids by Peck and Wang (Fig. 2 of Ref. 25), which is proved by Eq. (105)
tobeequal to [{(N)(rz — 75) + 2{n,)7,.] in the present model, is plotted
against the linking difference (L, — N75)by X or + mark; nisequalto 21,
16, 12, and 8 for upper to lower plots in both figures. The statistical average
[{Nz )71z — 75) + 2{n, )7, ] over all conformations has been calculated by
using the partition function of Egs. (61), (63), and (64b) with mz = 1 and
mz = 2 and fitted to the experimental data; each Z-conformational region
is assumed to consist of even number of Z forms. In Fig. 3(a), three param-
eters 7,. Ble; — e5), and Be,. are optimized wth Sx/2 = 1100 as done by
Peck and Wang (Ref. 25); 7,. = —0.16, Ble; — ez) =0.60, and Se,.

= 7.51 with the root mean square error 0.29. In Fig. 3(b), 7. is taken to be
zero according to the present model, and then three parameters including
Pk instead of 7. are optimized; Ble, — ep) = 0.84, Be;. = 8.28, and Bx/
2 = 1490 with the root mean square error 0.25. In both figures, the statisti-
cal average over all conformations [{Nz}(rz; — 75) + 2{n,)7,.] and the
statistical  average  over  alternating B-Z  conformations
[{Nz)pz (T2 — 75) + 2{n;) g7, ] are shown by solid and dotted lines, re-
spectively. The standard twists of the B and Z forms are assumed to be
75 = 1/10and 7 = — 1/12. N, is assumed to be equal to the total length
of the inserted G-C segment and the neighboring segment d(pTpGpTpG),
which may take the Z form (Refs 8 and 9); N, is equal to 46, 36, 28, and 20 for
upper to lower curves. &, is assumed to be equal to the length of pBR322
(Ref. 42) subtracted by the length of the segment d(pTpGpTpG); N, = 4358.

dependencies on N, and the total length N of DNA will be
examined. It will be assumed that Z helices consist of even
numbers of base pairs; Egs. (61), (63), and (64b) are used with
myz =1 and m, =2 to calculate partition functions. The
values of parameters are assumed to be 75 =1/10,
7z = —1/12,7,. =0, Ble; —ez) = 0.84, Be, = 8.28, and
Br/2 = 1490.

B. Characteristics of B-to-Z transitions; dependencies
onh,

The characteristics of B-to-Z transitions are shown in
Fig. 4 for DNASs containing a segment with various lengths
N, that can take the Z form. The transition curves are shown
in Fig. 4(a). The order parameter of B-to-Z transitions con-
sidered here is (N;)/{N;) zz. The transition point is de-
fined to be where the free energy of B comformations is equal
to that of alternating B—Z conformations; it should be noted
that Eq. (78) is an approximate relationship because the free
energy of alternating B-Z conformations is approximated by
that of the conformations with N, and n; equal to their most
probable values. The dependencies of the transition linking
number L, , on N, is shown in Fig. 4(b). As already proved
by Eq. (92), the transition linking number increases as N,
increases. Figure 4(c) shows the statistical average and the
most probable value of N, and the average number {n, ) 5
of Z regions in alternating B-Z conformations at the transi-
tion point (L, = L, ,). The free energies of B-Z conforma-
tions at the transition point are plotted against N, in Fig.
4(d) and against n, in Fig. 4(e). In Fig. 4(f ), the average ener-
gy and the configurational entropy of B-Z conformations
and the average energy of B conformations at the transition
point are plotted against V,. Also, each energy component at
the transition point is plotted in Fig. 4(g) as a function of N ;
the total free energy is divided into three terms, the average
of the short range interaction energy
[Nzlez — eg) + 2n,e;. ], the average of the long range in-
teraction energy [«/(2N)l[L; , — N7y — Nz(rz — 73)

— 2n,7,.]%, and the configurational entropy. In Figs. 4(d)-
4(g), the energy ey of the B form is taken to be zero, and the
configurational entropy of B conformations is defined to be
Zero.

The statistical averages of the number of base pairs in
the Z form, (N ) shown by solid lines and (¥ ) z by dot-
ted lines in Fig. 4(a), indicate that the transition proceeds
with a decrease in the population of B conformations and an
increase of alternating B—Z conformations rather than a gra-
dual increase of base pairs of the Z form. Free energy curves
in Figs. 4(d) and 4(g) clearly show that there is a large free
energy barrier between overall B conformations and B-Z
conformations with a certain number (N )z, of Z forms,
indicating a cooperative transition between them. Figure
4(g) shows the contribution of each energy component to the
total free energy. In the present case, this energy barrier is
attributable to the unfavorable energies e;. of the formation
of a B-Z junction and (e; — ep) associated with the confor-
mational change of a base pair from the B to the Z form,; the
increase of e;. and/or (e, — eg) will make the free energy
barrier higher and then transitions more cooperative; as
proved by Eqgs. (93) and (94), the transition linking number
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FIG. 4. Supercoiling-induced B-to-Z transitions of closed circular DNAs; dependencies on the length N, of a segment that can take the Z form. B-to-Z
transitions of DNAs with different N, but the same total length N = 4400 are calculated by using the partition function of Egs. (61), (63), and (64b) with
my = 1and m; = 2; each Z-conformational region consists of even number of Z forms. The values of parameters are 75 = 1/10, Tz = —1/12,1,. =0,
Blez — e5) = 0.84, fe,. = 8.28, and Bx/2 = 1490. In Figs. 4(d)-4(g), the energy e of the B form is taken to be zero, and the configurational entropy of B
conformations is defined to be zero. (a) B-to-Z transition curves; the values of N, are 100, 80, 60, 50, 40, 30, 24, 20, 14, and 10 for upper to lower curves. The
statistical averages, (N ) over all conformations and (N ) 5, over alternating B~Z conformations, of the number of Z forms are plotted against the linking
difference (L, — N7p) by solid and dotted lines, respectively. (b) Transition linking difference (Li, . — N7g) is plotted against N,. (c) Statistical average
{Nz) sz, the most probable values of N, and the statistical average (N, ) 5, in alternating B—Z conformations at the transition point (L, = L, ,)are plotted
against NV, by solid, dotted, and broken lines, respectively. (d) Free energies of conformations at the transition point (L, = L, ,)areplotted against the number
Nz of Z forms; the values of ¥, are 100, 80, 60, 50, 40, 30, 24, 20, 14, and 10 for lower to upper curves. The bars represent the most probable values of N . (e)
Free energies of conformations at the transition point (L, = L, ) are plotted against the number 7, of Z regions; the values of N, are 100, 80, 60, 50, 40, 30,
24,20, 14, and 10 for lower to upper curves. (f) Average energy and the configurational entropy of alternating B~Z conformations and the average energy of B
conformations at the transition point (L, = L, ,) are plotted against ¥, by solid, dotted, and broken lines, respectively. Because of the transition point, the
average energy of B-Z conformations subtracted by the configurational entropy is equal to the average energy of B conformations. (g) Statistical averages of
the short range interaction energy [Nz(e, — 5} + 2n,e;,. ] and long range interaction energy [«/(2N)][L, , — N7y — Nz(r, — 75) — 2n,7,.]* and the
configurational entropy at the transition point {L, = L, ,) are plotted by dotted lines as functions of the number N z of Z forms; a solid line represents the
total free energy. The values of parameters are N, = 100, N = 4400, and (L &« — N7p) = — 12.27. The bar represents the most probable value of N,.
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decreases as fe;. or Ble; — eg) increases. On the other hand,
the concave part of free energy curves in Figs. 4(d) and 4(g) is
attributable to the long range interactions that favor base
pairs to take the Z form. In other words, the cooperativity of
the transition results from the unfavorable short range inter-
actions and favorable long range interactions for the forma-
tion of Z forms. Although the combinatory entropy favors
the formation of many, short regions of the Z form rather
than a long stretch of the Z form, most of alternating B-Z
conformations have only one Z region in this specific set of
parameter values, because of the large positive value of e, ;
see Figs. 4(c) and 4{e). Thus, in Fig. 4(g), the configurational
entropy is almost equal to the combinatory entropy
[kIn(N, — N, + 1)] with N, > 0.

Until N, becomes sufficiently large, about 20 in this
specific set of parameter values, the most probable value of
N is equal to N, and also the slope of the free energy curve
at that point is negative, indicating that a DNA segment
which can take the Z form is not long enough to make a
preferable, long stretch of the Z form; see Fig. 4(d). Equation
(102) gives N, 5y ~2Be,. = 16.56that is smaller than 20; the
difference is attributable to the fact that the continuous ap-
proximation for N, is used to derive Eq. (102). Equation
(103) gives the explicit functional form of L, , for the case of
N,SN, . ie, (Nz)pzo=N, and (n;)p~1. In this case,
the whole segment will take the Z form in compensation for
taking a highly writhed and twisted structure. Decreasing
the linking number beyond the transition point causes
further writhing of DNA as well as twisting, depending on
the relative strength of the writhing force constant B 2 to the
twisting force constant w?; see Eqgs. (66) and (67). As N, in-
creases, the transition linking number increases because it
becomes possible to make a preferable, long stretch of the Z
form; see Eq. (92).

Figure 4(c) shows that the statistical average and the
most probable number of N, in alternating B-Z conforma-
tions appear to have a maximum, while &, increases beyond
N, 5. In this specific set of parameter values, (n; ), is al-
most equal to one irrespectively of NV,. Therefore, the second
factor in the right-hand side of Eq. (96) can be evaluated from
Eq. (81) with the approximation of
Cy,((Np)bz: {Nz)pz, 2{n;) 5z) ~=(N, — Nz )5z + 1). If
(N, + 1) <2(Nz) gz, then 3?AL, ,/IN,d(N )5z will be
positive, otherwise it will be negative. It is obvious from Eq.
(96) that as N, increases, (N,)p, increases while
(N, + 1) <2(N )z and then it begins to decrease; there-
fore, (N ) 5z has a maximum at (N, + 1)~2(N ) g . If the
combinatory entropy were to be ignored, d%4L, ./
IN,3{Nz ) s> would be zero and therefore, on the contrary
to the fact, it would be expected that if N,> N, ,,, then
(N2 )pz = N, 5. Thecombinatory entropy is also responsi-
ble for the increase of the transition linking number associat-
ed with the increase of &, in the case of N, > N, »s; Eq. (81)
represents the dependence of L; , on the combinatory factor
C, . Figure 4(f) shows that the contribution of the configura-
tional entropy of B—Z conformations to the total free energy
is negligible in the case of N, < IV, =20, but gradually in-
creases with the increase of N,. In the case of
N,>40> N, ,,theconfigurational entropy increases logar-

ithmically with NV,; in this specific set of parameter values, it
is approximately equal to the combinatory entropy
[k In(N, — (Nz) pz + 1)] because {n; )z ~1 at the transi-
tion point.

In case that a DNA segment that can take the Z form is
sufficiently long, i.e., at least N, > N, ,,, decreasing the link-
ing number beyond the transition point causes a gradual in-
crease of base pairs in the Z form before further writhing and
twisting of DNA,; see Fig. 4(a). Equation (69) indicates that if
the combinatory entropy were to be ignored, the linking
number change would wholly be transformed into the con-
formational change of base pairs from the B form to the Z
form. Also, Eq. (72b) indicates that the statistical average of
the writhing number of B-Z conformations changes only
because the differential coefficient of the conformational en-
tropy changes. In other words, after the transition, the link-
ing number change is transformed primarily into the change
of the twisting number. Here it should be noted that such B-
Z conformations are not relaxed, but significantly writhed;
at the transition point, only part of the linking difference is
transformed into the conformational change of base pairs
from the B form to the Z form; see Figs. 4(a) and 4{b).

C. Characteristics of 5-to-Z transitions; dependencies
on the total length N

Next, let us consider the effects of the total length & of
DNA on B-to-Z transitions. It should be recalled here that
increasing N is equivalent to decreasing Sx with regard to
their effects on the transition linking difference (L, ,-N75);
(L, , — N7g) is a function of N /(Bk); see Eqs. (81) and and
(90). Transition curves for DNAs with various lengths are
shown in Fig. 5(a). The transition linking difference de-
creases as /N increases; the right-hand side of Eq. (90) is nega-
tive. However, Fig. 5(b) shows that as proved by Eq. (91), the
density of the transition linking difference (L, , — N, 3)/N
asymptotically increases to a constant with the increase of N;
the second term in Eq. (81) is the asymptotic formof AL, , in
the limit of large N. Since it is shown in Fig. 5(c) that
(N2 )pz~~N, and {n;)z,~1 in the case of N, = 20, Eq.
{103) can be applied to that case. On the other hand, Figs. 5(c)
and 5(d) show that in the case of ¥, = 80> N, ,,, as N, in-
creases, the concave part of the free energy curve plotted
against N, becomes shallow and the most probable number
of N at the transition point increases. This is attributable to
the change, caused by the increase of &, of the long range
potential [Bx/(2N)|[Ly — N1y — Nz(1z — 75) — 2n,7,. %
As aresult, the most probable number of NV, at the transition
point gradually increases as NV increases, as proved by Eq.
(101); however, since N, > N, ,,, the most probable number
of N does not reach N.

Vil. CONCLUSION

A configurational partition function for transitions
between theright-handed B helix and theleft-handed Z helix
in a closed circular double stranded DNA has been formu-
lated in an idealized model. The formulation of the partition
function has been discussed rather in detail, because this
simple system may be worth analyzing as a one-dimensional
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FIG. 5. Supercoiling-induced B-to-Z transitions of closed circular DNAs; dependencies on the length N of DNA. B-to-Z transitions of DNAs with different
values of ¥, but fixed vlaues of N, are calculated by using the partition function of Egs. (61), (63), and (64b) with m = 1 and m z = 2; each Z—conformational
region consists of even number of Z forms. The values of parameters are 7, = 1/10, 7, = — 1/12, 75 =0, Blez — e5) =0.84, Be,; = 8.28, and Bx/
2 = 1490. In Figs. 5(c) and 5(d), the energy e of the B form is taken to be zero, and the configurational entropy of B conformations is defined to be zero. (a) B-
to-Z transition curves; the upper figure is for N, = 20 and the lower for N, = 80. The total length N of DNA is from 2000 to 9000 or 10000 for left to right
curves in increments of 1000. The statistical averages, (N } over all conformations and {: z ) sz over alternating B-Z conformations, of the number of Z
forms are plotted against the linking difference (L, — N75) by solid and dotted lines, respectively. (b) Density of the transition linking difference
(L, ~ N75)/Nis plotted against the total length N of DNA. The upper curve is for N, = 20 and the lower for N, = 80. (c) Statistical averages (N ) 5, the
most probable values of N, and the statistical average (1, ) 5> in alternating B~Z conformations at the transition point (L, = L, ,)are plotted against N by
solid, dotted, and broken lines, respectively. The upper figure is for N, = 20 and the lower for &, = 80. (d) Free energies of conformations at the transition
point(L, = L, ,)areplotted against the number N, of Z forms; the left figure is for ¥, = 20 and the right for N, = 80. The values of N are from 2000 to 10000
for the lower to upper curves in increments of 1000. The bars represent the most probable values of N,.

model system in which a displacement potential is strongly with or stronger than interactions between sites; in other
anharmonic and also long range interactions are included, words, d,=Cy/w, S 0(1). In the case of DNA, the width of a
and which undergoes structural transitions by the change of ~ junction is uncertain, but at least shorter than ten base pairs;
long range interactions. Because interactions between phon- because 16 base pairs of d(pCpG) are long enough to allow a
ons and junctions are neglected, the present formulation of Z conformation in a closed DNA.** Thus, d, would be the
the configurational partition function would be appropriate order of one. On the other hand, the double quadratic func-
for the regime in which the on-site potential is comparable tion employed here for the twisting potential and the har-
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monic potential for nearest neighbor interactions between
twists might be too simple to represent a double stranded
DNA. For practical use such as experimental analyses, the
formula of the partition function that is based on the Ising
limit d;,=Cy/w,-+0 and presented in Appendix B might be
useful; the formula of the partition function, Eq. (B3) with
w=wg = 0, is identical with Eq. (64) except for the libra-
tional factor that does not depend on conformational types.

The second order approximation [Eq. (9)] for the writh-
ing potential would be adequate; because the result of the
configurational partition function is consistent with the ex-
perimental fact®*** that the equilibrium ensemble of topoi-
somers with different linking numbers, which is generated
by using nicking-closing enzymes, obeys a Gaussian distri-
bution of the linking number whose variance is almost pro-
portional to the total length of DNA; the variance of the
linking number is indicated to be equal to N /(Bk). The writh-
ing force constant B} can be estimated from the twisting
force constant w3 and k=[wjB}/(w} + B})]. Also, B}
might be obtained from the twisting force constant w? for a
linear DNA and the effective twisting force constant
(@& + B3) for a closed circular DNA; long range interac-
tions due to the conservation of linking number that is specif-
ic to closed circular DNAs reduce the variance of the total
twist as if the twisting force constant increased from «} to
(@} + B?). However, at present those experimental dataap-
pear to be insufficient to obtain a reliable value for B .

It was claimed?® that in the limit of a long DNA, a
segment of the DNA that could take the Z form would whol-
ly change from the B form to the Z form at the transition
point. However, it has been proved that although the most
probable number of Z forms in alternating B—Z conforma-
tions at the transition point increases as DNA becomes long,
it can never attain the whole segment unless the segment that
can take the Z form is extremely short. Therefore, on the
contrary to the claim in Ref. 26, the expression Eq. (103) for
the transition linking number, in which a segment of the
DNA that can take the Z form is assumed to wholly change
from the B formtothe Z form at the transition point, is much
limited to use.

In the present analyses of experimental data,” 7,. is
taken to be zero according to the model. The estimates of the
relative energy of the Z form to the B form and the energy of
the formation of a B-Z junction are not significantly differ-
ent from those by Peck and Wang®*; however, B, optimized
instead of 7., has been estimated to be larger than the value
used by them. The present estimation would be another in-
terpretation of their data.

It should be noted that although B-to-Z transitions in-
duced by changing the linking number have been discussed,
the partition function formulated here can also be applied to
analyzing B-to-Z transitions induced by changing the rela-
tive energy (e — ep) of the Z form to the B form. In the
present analyses, we have completely neglected other struc-
tural changes that may take place as well as B-to-Z transi-
tions when the linking number is reduced, such as the cruci-
form formation that may occur only at inverted repeats in
base sequences and loss of base pairing or melting. Both
structural changes can decrease the twisting number such

that the requirement for writhe is reduced. Developing the-
ories to take account of such conformational changes re-
mains to be studied.
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APPENDIX A. CONFIGURATIONAL PARTITION
FUNCTION Z2, FOR PHOTONS

The classical partition function for harmonic lattice vi-
brations is easily calculated.

Jf INIIdP,- dAr, exp[ —B (Z;Pf + zzéﬁ-zﬁV‘,’m)]
i= i T J
- (%) "z (A1)

or

= exp { - Ek: In [Ba)k/(Zn')]}
= exp[ — NIn[Bwy/(27)]

—>(1/2)In [1+ 4(C?/wd)sin? (k/2)]]
3

zexp{ — NIn[Bwy/(27)]

_ Zi dk (1/2)1n [1 + 4(C2/w3)sin? (k/2)]]
TS —

- (%T)Nﬂ[(ﬁzag )m{ 1+ [1+ 4(2C3/w3)] 12 ]N'
(A2)

The dispersion relation used to derive Eq. (A2) is
0% = w} + 4C3 sin?(k /2),
k= (27n/N) with n=0...N—1. (A3)

A periodic boundary condition A7, 5 = A7; is assumed to
derive the above equation. By comparing Eq. (A1) with Eq.
(A2), the configurational partition function Z %, for phon-
ons or harmonic lattice vibrations [Eq. (43)] is derived.

APPENDIX B. FORMULATION OF THE
CONFIGURATIONAL PARTITION FUNCTION BASED
ON AN ISING MODEL; THE LIMIT OF d,=Co/wo—0

In this Appendix, on the basis of an Ising model, the
configurational partition function is formulated for the case
that the Z and B forms have different twisting force con-
stants. The twisting force constant is assumed to be equal to
w? for the B form and w% for the Z form
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nies an additional energy ¢;. and twist 7., which are both
(B1})  treated as parameters; 7;. may be treated to be zero. In other
words, nearest neighbor coupling between twists V,; is as-
sumed to be negligible compared with the twisting poten-
tials; Co/wz—0 and Cy/w;—0 are assumed.

Under these assumptions, the statistical weight of conformations that consist of Ny B forms, N, forms, andj B—-Z and Z-
B junctions is represented by

W;(Ng, Nz,j) = C{Np, Nz, j) exp[ —B(Ngzeg + Nze, +je, )]
<o (355 eas () oo -2 (557 e

T W
BB )]
— L, —Ngrg —Nzry —jr; — >—
N(k BTB zTz —J7; 57"(0,2

= C;(Ng, Nz, j)exp[ —B(Ngey + Nzez +je;.)]
2 (AL, \2 AA;
fHdAi( )exp[ —ﬂz%( w;) ]6 (2 — )
1 P (AAN? BB . ALV
deA/l (2[:—(()—;—) exp[ _BZE)Z—(Q)—,Z) ] exp[ - N (Lk —NBTB —Nsz —JTy — El:-a;’i‘) ],

(B2)

where w? takes either @3 or %, depending on whether ith base pair is in the B form or in the Z form. After the librational fac-
tor is evaluated, the above equation is transformed to

ey + (@3 /2)(1 — 15 for T~1p
ez + (@2/2)r — 7,)

Each twist is assumed to fluctuate independently. However,
it is assumed that the formation of a B—Z junction accompa- !

Vn(T)l’[

for 7e~r1,

Xexp[

( N/B}
(N/B +NB/wB +N7/(Oz)

172
WiNg, Nz, J) = ) C(Np, Nz, j)
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x [T _ (N/Bo)(NBTB + Np71z +jr5) + (NB/(’)% +Nz/wzz)Lk ]2]
“ (N/B2 + Np/w% + N, /w2)

; |
Xexp| — —Ng7rg — N7 T (B3a)
p[ 2AN/B3 + Ny/0% + N, /a)z) 578 = NzTz —JTr)
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where the free energy of the B or Z form including the librational entropy is defined as
f. Lin[(ZZY"] withoe(s, 2} (B4)
=€, ——In with o€ B, .
B [(ﬁwi) ]

The partition function is represented by Eqgs. (62) and (63) with Eq. (B3) instead of Eq. (64); the combinatory factors C, are
given by Egs. (57), (58), (60), and (61).

! Abbreviations for bases in DNA (deoxyribonucleic acid) are A, adenine;
C, cytosine; G, guanine; T, thymine; and U, uracil. The corresponding
deoxyribonucleosides are dA, deoxyadenosine; dC deoxycytidine; dG,
deoxyguanosine; dT, deoxythymidine. Also, the nucleotides are pA, aden-
osine 5'-phosphate; pC, cytidine 5'-phosphate; pG, guanosine 5'-phos-
phate; pT, thymidine 5’-phosphate. d(pCpG), *d(pGpC), is a complemen-
tary double stranded polymer of alternating deoxyribocytidine
5’-phosphate and deoxyriboguanosine 5'-phosphate.
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