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Abstract. Thermodynamic properties of the antiferromagnetic Heisenberg
model with frustration on the square lattice are investigated using quantum
simulation based on the decoupled cell Monte Carlo method. The effect of
frustration is introduced through an additional next-nearest neighbor antiferro-
magnetic interaction J2. With increasing Ja, certain spin ordering was observed
at low temperatures.

The discovery of high T, superconductivity renewed the interest in two- dimen-
sional quantum spin systems [1]. Among these systems the antiferromagnetic
Heisenberg model with frustration on the square lattice (FAFH) is an important
one due to its relation to the doped oxide superconductors. The frustration is
introduced through an additional next-nearest neighbor exchange interaction
along the diagonal of the plaquettes of the lattice. In this short note, we study
the thermodynamic properties of the spin-1/2 FAFH on the square lattice,
defined by the Hamiltonian

H=2J1) SiSiyc+2J2 ) SiSits (1)
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Here, i denotes a site of the square lattice, while ¢ are vectors along x or y
directions, and 6 are along the diagonals of a plaquette. The energy scale is fixed
by setting J; = 1. We performed a quantum Monte Carlo simulation based
on the decoupled cell Monte Carlo method (DCM) [2]. The basic ingredient of
DCM is to calculate transition probabilities from a spin state to another one
on a cell of finite size, where the central spin of the cell makes a transition
from up(down) to down(up). Transition probabilities thus derived generate
a sample of the Markov chain. The time average of this Markov chain gives
relevant thermodynamic quantities. We calculated energy E, uniform magnetic
susceptibilty x and spin pair correlation function C(r), defined by:

1 1 2\2 __1 Z Q2
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where < §2 > denotes the canonical average of Q. The decoupled cell (DC)
here includes 13 spins, with free boundaries, as depicted in Fig. 1. In DC,
the central spin is flipped with all the remaining spins being fixed. The total
numbers N of lattice sites are 32 X 32 and 64 X 64, with periodic boundary
conditions. The simulation begins at T = 2.0J; from a random initial spin
configuration. The system is then cooled in steps of AT = 0.1J;.

We now present results for the 64 X 64 system. In Fig. 2 we show the
temperature dependence of E for various values of J,. For J, = 0.5, the results
of frustration are so strong that they prevent formation of some spin ordering.
For J; = 1.0 we obtain nonuniform behavior of E near kT'/J; ~ 0.6, resulting in
negative specific heat. At the present time, we do not have conclusions whether
this is due to finitness of DC or an indication of the formation of spin ordering
depicted in Fig. 4, which is observed below KT/J, = 0.5 for Jo = 1.0 in our
calculation. In Fig. 3 we show the dependence of x on J;. With increasing Jo,
x decreases. We could not find a nonuniform behavior of the susceptibility in
the temperature region of our simulations. Present work is a preliminary one,
and further, more detailed calculations will be published in the near future.
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