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A modified Decoupled Cell Method (mDCM) for quantum Monte Carlo simulation is proposed to
remove the difficulty in the Decoupled Cell Method (DCM), which causes a negative specific heat and
an unexpected sudden increase of a susceptibility in a low temperature region. In one-dimensional
XY-model (s=1/2), the results obtained by mDCM were shown not to have any negative specific heat
and for the susceptibility along z-axis, gave fairly good agreement with the exact one.

Recently a number of studies have been reported on the Monte Carlo methods for
quantum many-body systems.”~® Many years ago the decoupled cell Monte Carlo
method (DCM) was proposed as a new method of Monte Carlo calculations for
quantum systems as a direct extension of the Metropolis method for classical systems”
and was used to low-dimensional quantum spin systems.”~'? In one-dimensional
- XY-model (s=1/2), for which the exact solution were known,'® results obtained by
DCM were found to give a good approximation for the internal energy and the
zero-field susceptibility by increasing the size of the decoupled cell (DC). However
at low temperatures the result of the internal energy is not appropriately estimated,
for it gives a negative value of the specific heat. The reason for this flaw may be
attributed to a breakdown of the detailed balance of the Monte Carlo update due to
the noncommutativity between the local interaction operators at low temperatures.
In order to remove this difficulty there are two possibilities. The one is to enlarge the
size of DC, but it is limited by the capability of computer power. The remaining is
to improve DCM to recover the detailed balance, extending the basic concept of DCM
for a certain size of DC.

It is the purpose of this paper to look for the second possibility to improve DCM,
which could be useful even in the low temperature region. First we explain the basic
ingredient of DCM taking quantum spin systems (s=1/2) as an example. In the
Metropolis method a required canonical distribution is generated as the limit distribu-
tion of a Markov chain. This Markov chain can be any one so long as (i) the
transition probability W(S—S’) from a spin state S to a state S’ satisfies the condi-
tion of detailed balance:

P(S)W(S~S)=P(S)W(S'~S) (1)

and (ii) the Markov chain is irreducible and recurrent. Here P(S) is the probability
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of a spin state S. In the quantum spin systems (s=1/2) the state of the i-th site can
be specified by a variable s==%1/2, and the state of the total system by an N-
dimensional state vector S=|si, sz, -, sv> whose i-th component is s;. The probabil-
ity of S in the canonical distribution is now given by

P(S)=<Slexp(—BH)|S>/Z , (2)

where 8=(1/kT) and Z stands for the partition function of a system. As in the
classical Metropolis method the condition (ii) is satisfied by giving positive transition
probabilities between states that are different from each other only at one site /(i =1,
2,--,N). The problem in quantum case is-how to obtain adequate transition proba-
bilities consistent with (i). Let L.(v) be a set of sites whose distance from the i-site
does not exceed a certain integer v and L; be a set of all sites not belonging to L.(v).
We call such L;(v) the decoupled cell(DC) of radius v, and its center is i-site. Let S;
denote the state of L;(v) except i-site and let S: denote the state of L;. The state of
the total system can then be written as S=(s;, S;, S;). The transition probability
between S=(s;, S;, S:) and S’=(—s,, S;, S:) can be obtained through (1) if one knows
the value of

q(S)=P(S)/P(S")
=<{Slexp(—BH)|S> /LS’

exp(—BH)|S"> . (3)

Let H(v, 7) be the Hamiltonian of DC which is obtained from H by deleting all the

terms containing operators of L;. The basic ingredient of DCM is to approximate (3)
by

g (S:)=<s:, Silexp(— BH (v, i))|s:, Si>/<{—s:, Silexp(— BH (v, i))|—s:, Si> . (4)
Then the transition probability Wi defined in terms of DC is given by
Woc(—s:— s:)=max(1, ¢*(S)) . (5)

The physical meaning of replacing (3) by the approximation (4) was fully discussed
by Matsuda et al.¥ If we use (5) as the transition probability from the state S’=(—s;,
Si, Si) to the state S=(s;, S;, S;) in Monte Carlo calculation, we are able to get a
Markov chain of a quantum system by using the Metropolis algorism. Thus DCM
gives natural extension of the classical Monte Carlo method to quantum systems.
However it should be noted that the transition probability (5) does not satisfy the
detailed balance. The probability Wic(s;— —s.) is a function of the neighbouring
spins in the cell, which includes finite spins. However when we calculate the transi-
tion probability of some other spin in the cell, we introduce Wic with the form of (5)
independently. If H(v, /) commutes with each other, the detailed balance is satisfied
automatically as far as it is satisfied locally. Thus (5) gives correct transition
probabilities for classical systems. But in quantum systems where H(v, 7) does not
commute with each other, the transition probability defined at each site independently
does not satisfy the detailed balance. The flip of a spin sz causes a change of all the
transition probabilities for which H(v, 7) includes s.. Thus the changes cannot be
reduced to the one for Wic(s;— —s;). From this point of view, in determining the
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transition probability it is important to include not only the DC whose central site is
Z, but all the DC which include i-site in it. Here we reformulate the DCM taking into
account the above considerations. ‘

First we decompose a system into identical cells (DC), whose shape and size are
given. The way of decomposition is not unique but multiple, depending on the size
and shape of a cell. To one of decompositions, labeled by j, we associate the cell
Hamiltonian H.(j, k) with each cell, £-th cell, where # is the number of lattice sites
included in each cell. Then the Hamiltonian of a system is written as a sum of Hy,(J,
k) as

H=(1/r(n)) 2 (SH, B)), (6)

where the sum over £ means the sum of cells over a whole lattice and that over ; does
the sum over all different decompositions. #(#%) is the number of different decomposi-
tions.

Using (6) the probability of a certain spin configuration |S, s:> is given by

P(S, s)=(1/2)<S, silexo(— (8r () 2 (SHG, IS, 525, (7)

where Z is the partition function of a system. The ket (bra) |S, s.> (S, s:|) represents
the spin configuration of a system, in which i-th spin is s; with s;/=%(1/2). We
approximate (7), by invoking the basic concept discussed above, as

P(S, 5:)= (120G, B)lexp(—(8/r(m)) Halj, k))lo(i, &), 8

where |0(j, k£)> represents a spin state of a cell (DC) labeled by (7, £). The transition
probability W(s;~ —s.) is defined by

W(s:— —s;)=max[1, P(S, —s.)/P(S, s:)], (9)

where P(S, +s,) is defined by (7). We approximate (9) by substituting (8) into P(S,
*s:) in (9) to get Wac in modified decoupled cell method (mDCM) as

I/V[)C(Si‘+ —Si)

I1T1<0G, k), = silexp(—(8/r(n) Halj, k)l 6(j, k), —s:>
IIT1<o(j, k), sdexp(—=(8/r(n) Haj, EDIoC, k), s:

=max| 1, (10)

The product over % in (10) must be done over all cells which include the ¢ -site; the total
number of such cells is equal to the number of spins in a cell, that is #». Here it must
be noted that in DCM only the cell whose center is the i-site is taken into account in
(10). If the Hamiltonian H of a system consists of only a nearest neighbor coupling,
(9) and (10) coincide with those of classical ones in the classical limit. However it
should be noted that in one-dimensional case when the Hamiltonian H includes in it
the next nearest coupling constants beside the nearest neighbor coupling, each of the
next nearest neighbor coupling is included in (8) by a factor (z—2)/(n—1), whereas
a nearest neighbor coupling is included in (8) by 1=(n—1)/(n—1); see Table I(a).
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Table 1.
(a) One dimension.
1D lattice spins/cell decompositions
=overlaps of overlaps of

)

nearest neighbors® next neighbors®

n n—1 n—2

(b) Two dimensional lattice.

2D lattice cell shape spins/cell decompositions
=overlaps of overlaps of
nearest neighbors®  next neighbors®

square lozenge 5 2 1

13 8 6

square square 9 4 4
trigonal hexagonal 7 3 0 2
19 12 10 10
trigonal parallelogram 9 4 4 2

® The number of decompositions is equal to the number of overlaps of a nearest neighbor coupling
included in the sum of cell hamiltonians H. over all decompositions in Eq. (6); couplings on the
edge of a cell are split into two neighboring cells in the cell decomposition of hamiltonian. » The
number of overlaps in the next nearest couplings.

o o ]

o o
i Lo} o [+

] o ] [} o (o] 0
| SO —
i=1 o o
S SN | SR
i=2 ° ° °
(a) (b)

Fig. 1. (a) The cell decomposition of one-dimensional lattice by DC, which includes three lattice sites
in it. Cells enclosed by the same type of line are included in the same decomposition.
(b) The decomposition of triangular lattice by hexagon, which is the DC. Cells enclosed by
the same type of line are included in the same decomposition. The number of possible decomposi-
tions is three.

Therefore (10) does not give a correct expression in the classical limit in this case (in
one-dimensional lattice). In two-dimensional lattice proper size and shape of a cell
(DC) depend on the type of lattice and also the range of couplings. For each lattice
and DC we show in Table I(b), the number of lattice sites in DC, the feasible number
r(n) of decomposition of a lattice into an array of DC, which is equal to the number
of overlaps of a nearest neighbour coupling included in the sum of H, over all
decompositions in (6), and also the number of overlap of the next nearest neighbor
coupling. The shape of DC is restricted, for a whole lattice must be split completely
into a two-dimensional array of DC. Couplings on the edge of DC are split equally
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into two neighboring DC in the cell(DC) decomposition of the Hamiltonian. If a next
nearest neighbor coupling exists, the shape of DC for which the number of overlaps of
nearest neighbor coupling is the same as that of the next neighbor couplings will be
appropriate, because they give the correct classical limit. In Figs. 1(a) and (b) we
show DC including i-site in each case of one-dimensional lattice and a hexagonal cell
decomposition of a triangular lattice. Thus we complete the modification of DCM
(mDCM). In calculating the internal energy of a system we have used the following
expression,

e=<{H>IN
—(Ur(n) B (S, BN, (1)

where <> denotes the average with respect to the cell Hamiltonian H.(j, k).

We have applied mDCM thus formulated, to 1-D quantum XY -model (s=1/2) and
calculated the internal energy ¢ and the perpendicular susceptibility x, by increasing
the size of DC from 3 to 11. Simulations were performed using the Metropolis Monte
Carlo procedure.” The number of lattice points used here is 128. The run was taken
at T'=1.5/, where J is an exchange interaction, starting from a random configuration.
The first 1000 Monte Carlo steps (MCS) were used to make the system in thermal
equilibrium and the following 10000 MSC were used to calculate the thermodynamic
quantities. The system is then cooled in steps down to 0.05 7. At each temperature
the initial configuration was taken from that of the final one of the previous tempera-
ture and first 1000 MCS were used to get the thermal equilibrium. We show in Fig. 2
the result of the internal energy ¢ with the exact solution of Katsura. For compari-
son we show ¢ calculated by DCM in Fig. 3. We see from these figures that in mDCM
we do not have negative specific heat in low temperature region and that by increasing
the size of DC the result gradually approaches the exact one. However we have to
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Fig. 2. The internal energy e per lattice site for Fig. 3. The internal energy € per lattice site for
1D XY model (s=1/2) in zero external field. 1D XY model (s=1/2) in zero external field
The solid line is the exact result by Katsura.'® obtained by DCM. The solid line is the exact
The numbers in the figure represent the number result by Katsura.® The numbers in the
of lattice sites in DC. figure represent the number of lattice sites in

DC.
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Fig. 4. The zero field susceptibility y, along z-axis
per spin for 1D XY model. The solid line is
the exact result by Katsura.'® The numbers in
the figure represent the number of lattice sites
in DC.

-0.60

° kT/J=0.3
-0.62
o kT/J=0.2

® kT/J=0.1

-0.64

-0.66

-0.68

-0.70 T T
0.0 0.1 0.2 0.3

1/n

Fig. 6. The internal energy ¢ vs (1/#) for 1D XY
model at fixed temperatures. For n—oo the
exact results are indicated.

method of Monte Carlo calculations of quantum many body systems.
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Fig. 5. The zero field susceptibility y, along z-axis
per spin for 1D XY model obtained by DCM.
The solid line is the exact result by Katsura.'®
The numbers in the figure represent the number
of lattice sites in DC.

note that for the case n»=11 the agree-
ment to the exact result is better for
DCM than mDCM above 0.35/7. In
Figs. 4 and 5 we show the perpendicular
susceptibility y. obtained by mDCM and
DCM, respectively, where solid lines are
the exact one. We see that the results
by mDCM give better approximate val-
ues than DCM. In Fig. 6 we show the
plot of € versus 1/(size #» of DC). There
are no rules how to extrapolate them to
the limit #—co. Those points in Fig. 6
are best fitted arbitrarily by the straight
line vs (1/x) for finite . However for
n—0o these straight lines do not give
exact results. Thus we may need
higher order terms of # to them.

In this paper we have proposed a
modification of DCM(mDCM) as a
This mDCM

might have some similarity to the cluster decomposition method proposed by Suzu-

kl 14)

We have applied mDCM to 1D-XY model (s=1/2).

The results do not have

any of negative specific heat which was observed in DCM. We have to apply mDCM
to another low-dimensional quantum spin systems in order to examine its utility.

This is in progress.
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