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Abstract:We used the modified Decoupled Cell method (mDCM) of quantum Monte
Carlo simulation to calculate the thermodynamic properties and spin configurations of
the frustrated J; — J, model on the square lattice by increasing the frustration parameter
a= % from 0 to 1. The size N of a system used in Monte Carlo simulation in this study
is 32 x 32. We found that for small values of a the Neel state is a ground state spin
configutation of this model system, whereas for a > 0.6 a collinear state is its ground
state configuration instead of the Neel state.

1. Introduction

Since the discovery of high T.-superconductor the two-dimensional quantum spin (s = %)
system have received much attention experimentally as well as theoretically [1]. Particu-
larly the frustrated J, — J; model on the square lattice (hereafter we call it J; — J, model
) have attracted much interest because of the suggestion that the effect of the hole dop-
ing in the high T, superconductor may be simulated by the introduction of frustrations
into the antiferromagnetic Heisenberg model with the nearest neighbor interaction [2].
In addition it is expected that this model exhibits the interplay between the frustration
and the quantum fluctuation, an important problem in the low-dimensional quantum spin
systems. The main problems there are which is the ground state spin configuration, and
how are the thermodynamic propeties such as the specific heat, magnetic susceptibility
and the spin pair correlation functions when the frustration parameter o increases from
0 to 1.

In the case of the classical J; — J; model the ground state is the Neel-ordered state for
a < 0.5, and is the continuously degenerate four-sublattice state for a > 0.5. At a = 0.5,
the two classical states are degenerate. In the quantum case the Neel order is believed
to be the stable ground state for @ < 0.5. It has been proved that the nonexistence
of the twisted ordered state [3]. For the case where a is near 1, it is supposed that a
collinear state is the ground state spin configuration [4]. In the region, in which « is
near 0.5 the ground state configuration is still remained to be solved. For the theoretical
studies the spin wave theory, ordinary as well as modified [5-6], Schwinger-boson mean-
field theory (7], finite lattice study [8-13] and series expansions [14-15] are to be noted.
However their results for the ground state spin configuration are different to each other.
For example some works predicted a disordered or spin liquid state at around a = 0.5,
and the others claimed that the classical Neel state is a ground state configuration even
in the quantum mechanical J;, — J; model. Numerical studies of finite lattices based on
the exact diagonalization method gave the results that at 0 K the Neel state gradually
decreases with an increase of a and at about o = 0.6 this state disappear (16]. However
the number of lattice sites included in those studies were at most 36 and is not enough to
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extract definite conclusions of the physical quantities of the system in the thermodynamic
limit.

To overcome this difficulty and to extend the study at finite temperatures, a quantum
Monte Carlo calculation was used by invoking the generalized Trotter formula (Suzuki-
Trotter formula), and gave informations on the magnetic properties of this model [16).
However there exists a serious negative sign problem there and also lattice sizes used there
were small one. Therefore it is desirable to invoke a quantum Monte Carlo method which
is free from the negative sign problem and also is able to extend a lattice size with ease.
The Decoupled Cell method (DCM) and the modified Decoupled Cell method (mDCM),
which were proposed in 1984 and 1993, and used extensively since then, is the one which
is free from these difficulties [17-19)].

It is the purpose of the paper to study the thermodynamic properties of the quantum
J1 — J, model on the square lattice by applying mDCM and show the results obtained. In
the next section we give a detailed account of DCM and mDCM. In the section 3 we show
the results obtained by applying mDCM to J; — J, model. The last section is devoted to
discussion. The preliminary report of this work was published in ref.[23].

2. The Decoupled and the modified Decoupled Cell method

To explain the basic idea of DCM let us consider a quantum spin system (s = 1/2)
whose Hamiltonian is given by H. The state of the i-th site can be specified by a vari-
able s = +1/2, and the state of the total system by an N-dimensional state vector
|S >= |s1,82,...,s8 > whose i-site state is s;. The probability of the state S in the
canonical distribution is given by

P(S) =< Slexp(-BH)|S > /2, (1)

where 8 = (1/kT) and Z stands for the partition function of a system. As in the classical
Metroplis method, the condition of irreducibility and recurrency of the Markov chain is
satisfied by assigning positive transition probabilities between states that are different
from each other only at one site i(: = 1,2,..., N). The problem in the quantum mechan-
ical case is how to obtain adequate transition probabilities consistent with the condition
of the detailed balance at equilibrium

P(SYW(S — &) = P(S)W(S' — S) (2)

where W(S — §') is the transition probability from a spin configuration S to S".

Let Li(v) be a set of sites whose distance from the i-th site does not exceed a certain
integer v and L; be a set of all sites not belonging to Li(v). We call such L;(v) the
decoupled cell (DC) of radius v with its center at the i-site. Let S; denote the state of
Li(v) excepting the i-site and S; denote the state L;. The state of the total system can
then be written as S = (s;,5;,5;). The transition probability between S = (i, S, S))
and 5’ = (—s;, 5;,5:) can be obtained from Eq.(1) if one knows the value of

_ P(S) < S|exp(—-BH)|S >
9(S) = P(S') ~ < S'exp(-BH)|S' >: (3)

Let H(v,t) be the Hamiltonian of a DC which is obtained from H by deleting all the
terms containing operators of L;. The basic ingredient of DCM is to approximate Eq.(3)
by
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< si, Si|exp(=BH(v,1))|si, S; > )
< —s;, Si|exp(=BH(v,1))| — i, Si >

¢S =

This approximation is based on the presumption:
The dependence of ¢ on 5; gradually decreases by increasing v.

The right hand side of Eq.(4) can be obtained readily by solving the eigenvalue prob-
lem of H(v,1) by computer. Let (E,, ¢,;n = 1,2,.., f = a number of spin states of DC) be
eigenvalues and eigenfunctions of H(v,1). With their use Eq.(4), ¢“)(S;) can be rewritten
as

nl < 3i,Sil¢n > |? exp(—-BE,)

(v) S = . 5
TS = 1< s Silén > Pexp(—BE) ®

The transition probability Wpc defined in DCM is given by
Wpe(—si — i) = maz[1,q™)(S))). (6)

The physical meaning of replacing Eq.(3) by Eq.(4) was fully discussed by Matsuda et
al. [20]. If we use Eq.(6) as the transition probability from the state S’ = (—s;, S;, S:) to
the state S = (s;,S:,5:) in Monte Carlo calculation, we are able to obtain the Markov
chain of the given quantum mechanical system using the Metroplis algorithm. Thus DCM
gives a natural extension of the classical Monte Carlo method to quantum systems. The
detailed computational procedure of DCM is given in references [17,21] . We applied
DCM to one-dimensional XY model and compared the results with the exact one [22]
which is derived analytically and found that by increasing the size of DC the obtained
results gradually approach the exact one except for very low temperature region, where the
calculated value of an internal energy gives a negative specific heat and the perpendicular
susceptibility increases abruptly contrary to the fact that the exact analytical solution is
finite at absolute zero of temperature {17,21].

These difficulties in the low temperature region might be attributed to the breakdown
of the detailed balance originating from the finiteness of a DC used there. In order to
remove this difficulty there are two possibilities. The first is to enlarge the size of DC,
but it is limited by the capability of computer power. The second is to improve DCM
to recover the detailed balance, extending the basic concept of DCM for a certain size of
DC. As we pointed out previously, DCM could be regarded as a natural extension of the
classical Monte Carlo method to quantum systems. However, it should be noted that the
transition probability defined by Eq.(6) does not satisfy the detailed balance. The prob-
ability Wpe(si — —s;) is a function of the neighbouring spins in the cell, which includes
a finite number of spins. However, when we calculate the transition probability of some
other spin in the same cell, we introduce Wpc in the form of Eq.(6) independently. If
the cell Hamiltonians H(v,i) commute with each other, the detailed balance is satisfied
automatically as far as it is satisfied locally. Thus Eq.(6) gives correct transition prob-
abilities for classical systems. But in quantum systems where H(v,1) do not commute
with each other, the transition probability defined at each lattice site independently does
not satisfy the detailed balance. The flip of a spin s; causes a change of all the transition
probabilities for which H(v, 1) includes si. Thus the changes cannot be reduced to that of
Wpe(si — —s;). From this point of view, in determining the transition probability it is
important to include not only the DC whose central site is ¢, but all the DC which include
the i-site. Here we reformulate DCM taking into account the above considerations.
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First we decompose a system into identical cells (decoupled cell; DC), whose shape
and size are given. The way of a decomposition is not unique. It depends on the size and
shape of DC. With a decomposition, labeled by j and a k-th cell, we associate the cell
Hamiltonian H,(j, k) , where n is the number of lattice sites included in each cell (DC).
Then the Hamiltonian of a system is written as a sum of H,(j, k) as

Z ZH 3, k), (7)

r(n

where the sum over k means the sum over all cells on a lattice and that over j means the
sum over all different decompositions. The symbol r(n) denotes the number of different
decompositions.

Using Eq.(7) the probability of a certain spin configuration |S, s; > is given by

P(S,8:) = > < 5, silexp(~ ( Z(ZH (5, IS, s >, (8)

where Z is the partition function of a system. The ket (bra)|S,s; > (< S, si|) represents
a spin configuration of a system, in which the i-th spin is s;, with s; = £(1/2). We
approximate Eq.(8), invoking the basic concept discussed above, as

P(S, %) = 211 < a(j, B) exp(~( (‘i)

where |o(j, k) > represents a spin state of a cell (DC) labeled by (7, k).
The transition probability W(s; — —s;) is defined by

(7, E)e (7, k) >, (9)

P(S,—s:)

W(si = —s;) = maz(l, P(S.5) ], (10)

where P(S, +s;) is defined by Eq.(8). We approximate Eq.(8) , by substituting Eq.(9) into
P(S, +s;) in Eq.(10) , to obtain Wpc in the modified Decoupled Cell Method (mDCM)
as

‘VDc(S; — —s;)
LI < o(j, k), —sil exp(= 5 Ha(j, k))lo (5, k), —

= maz|l,
IL;I1x < o(3, k), s‘lexp(—,(")H (7, K)o (5, k), si >

]- (11)

The product over k in Eq.(11) must be over all cells which include the t-site; the total
number of such cells is equal to the number of spins in a cell, that is n. Here.it must be
noted that in DCM only the cell whose center is i-site is taken into account in Eq.(11) . If
the Hamiltonian H of a system consists of only a nearest neighbour coupling, Eqs.(10) and
(11) coincide with those of classical ones in the classical limit. However it should be noted
that in one-dimensional lattice when the Hamiltonian H includes the second-neighbour
interaction beside the nearest neighbour interaction, each second-neighbour interaction is
included in Eq. ( ) by a factor 2=%, whereas the nearest neighbour interaction is included
in Eq.(9) by 2= = 1. Thus Eq (11) does not give a correct expression in the classical
limit in this case (in one-dimensional lattice with a second-neighbour interaction). In
two-dimensional lattice proper size and shape of a cell (DC) depend on the type of lattice
and the range of interactions. For the detailed account of the possible decompositions
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of a certain two-dimensional lattice with nearest- and second-neighbour interactions, into
DC of the given shape and size , the reader is referred to ref.[18]. Thus we complete the
modification of DCM and have a modified Decoupled Cell method (mDCM) .

3. J1 - J2 model

The Hamiltonian of the quantum J; — J; model is defined as

H=215S:-S;+2), 3 S:-S;. (12)
iJ 1

Here J, and J; are the nearest-neighbor and next-nearest-neighbor interactions, both of
which are antiferromagnetic (J,, J; > 0) on a square lattice. S;is a quantum spin operator
(S = 1/2) of the i-th lattice site. The Hamiltonian is isotropic, so that we take the z-axis
as the axis of a diagonal representation. The thermodynamic quantities we calculate here
are an internal energy, specific heat, total magnetization, susceptibility of a total system
and also spin configurations at various temperatures for the given frustration parameter
a. We did not calculate staggered magnetizations and susceptibilities, for at present we
do not know the spin configuration of the Hamiltonian for a given a. The size of the
decoupled cell (DC) used in here is depicted in Fig.1, where the interaction on each edge
is '—’21 instead of J;. This is because coupling constants on the edge of DC are split equally
into two neighboring DC in the cell decomposition of the Hamiltonian. The number n
of lattice sites included in DC in Fig.1 is 9. The total number N of lattice sites in the
system used in the present Monte Carlo calculations are 32 x 32 with a periodic boundary
condition.

Calculations were performed using the Metropolis Monte Carlo procedure. The run
was taken at kgT = 2.0J;, starting from a random configuration. The first 1000 Monte
Carlo steps (MCS) were used to make the system in thermal equilibrium and the following
10000 MCS were used to calculate the thermodynamic quantities and the spin configura-
tions. The system is then cooled in steps down to kgT = 0.1J;. At each temperature the
initial configuration was taken from that of the final one of the previous temperature and
first 1000 MCS were used to get the thermal equilibrium.

In calculating the energy of the system we have used the following expression

1 r(n) )
= o LT < G >), 13

O QR
i 32
Ja

( D

(J v \_) Fig.1 A size of a decoupled cell (DC).
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Fig.2 Specific heat of the quantum J; — J; model (J; — J; model), where
numbers in the figure represent the numerical value of a.

where < > denotes the average with respect to the cell Hamiltonian H,(j, k) and r(n)
means the number of different decompositions. The sum over k and j means the sum of
cells over a whole lattice and the sum over all the different decompositions. For the DC
depicted in Fig.1 r(n = 9) is 4 . The specific heat c is calculated as

Ae
= — 14
N (14)
where Ae and AT are energy and temperature differences, respectively. The total mag-
netization M, along z-axis is

M, =< ES,? > (15)

Here < 1 > denotes the canonical average of . The mean square magnetization of a
system, which is written as m,(2), is defined as

1

my(2) = < OIH (16)
Thus, the magnetic susceptibility x of a system is calculated as
— 1 2\2 ml(z)
The spin pair correlation function C*(r), which is defined as
C*(r) =< SiS%,, > (18)

was calculated along z- and y-axis.
In Fig.2 we show the result of the specific heat for various values of a. There are
two things to be noticed. The peak in the specific heat is sharp in the extreme cases
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Fig.3 The magnetic susceptibility x of J; — J, model for a < 0.6,
where numbers in the figure represents a.

Fig.4 The magnetic susceptibility x of J; — J; model for o > 0.6,
where numbers in the figure represents a.
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Fig.5 The spin correlation function C*(r) along z-axis, where numbers
in the figure mean distance in unit of lattice constant. (a = 0.3)

Fig.6 The spin correlation function C*(r) along y-axis , where numbers
in the figure mean distance in unit of lattice constant. (a = 0.3)

of a = 0 and 1, and appears in the high temperature region. This sharpening of the
peaks might be interpreted as the gradual ordering of the system into the Neel state
and the collinear state, respectively. Second, the height and the position of peaks in the
intermediate values of a become low and move to the low temperature region. Thus, the
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Fig.7 The spin configuration of J; — J;
model for a = 0.3 at kgT = 0.1J;.
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Fig.9 The spin correlation function C*(r) along y-axis , where numbers
in the figure mean distance in unit of lattice constant. (a = 0.9)

peak there indicates that one can not expect any finite temperature transition. For the
total magnetization M, we always have observed zero as it should be. In Figs.3 and 4
we show the result of the susceptibility x. From this figure we see that in the case of
a = 0.6, x increases in the low temperature region , whereas above and below a = 0.6,
x decreases to zero, showing that there exists ordered states of a spin configuration for
those values of a. In order to obtain the spin configurations we have calculated the spin
pair correlation functions defined by Eq.(18) along the x- and y-axis. In Figs.5 and 6 we
show C*(r) for a = 0.3 along x- and y-axis. The numbers in each figure indicates r. From
them we obtain the spin configuration, which is depicted in Fig.7 at % = 0.1. Thus we
have Neel State for a = 0.3. We have observed similar behaviour for a = 0.0, 0.1,0.2, 0.4
and 0.5. In Figs.8 and 9 we show C*(r) for @ = 0.9. From them we have a collinear spin
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Fig.10 The spin configuration of J; — J; model for a = 0.9 at kT = 0.1J;.

Fig.11 The spin correlation function C*(r) along z-axis, where numbers
in the figure mean distance in unit of lattice constant. (a = 0.6)

{ oy RNoRN NEoRN NEONN RNORN RBEONN
OeO0Oe@O0OeOeOCeOeo

CeO0Oe@O0OeO0Oe O e O e

OeO0OeO0eO0Oe e 0O0e
®e O OO O0Oe O e O eo
OeOCOeeO0Oe OO0 OCeoe

® 0O OO0O®O0OO0Ce®O0O e
{ BNoRN RNONE RNoHN NEONN RNORN BEONN

COeO0OeO0OeOeOeOeo0
CeO0OeO0OeCe e e O 00
COeO0OO0Oe0OeO0O0O0eO0oOo
oNNoNN NN NNORN NNORN BN BN BNONN NN J

OO0Oe0Oe 000 e®O0DoO0

® Fig.12 The spin configuration of J; — J,
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configuration for this value of a. This is shown in Fig.10. For a > 0.6 we have obtained a
collinear spin configuration. From these observations we conclude that the ground state

spin configuration of J;

— J2 model is Neel state for a < 0.6 and a collinear state for

a > 0.6. At a= 0.6 we show in Fig.11C*(r) along x-axis. (C*(r) along y-axis is the same
as that of x-axis.)

In Fig.12 we show the spin configuration at

= 0.1, from which we see that there

are seeds for the growth of Neel and collineat spm conﬁguratlon, respectively.
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4. Discussion

In this study we have applied mDCM, which does not have difficulties of negative sign
problem, to the quantum J; — J; model on a square lattice and calculated the thermo-
dynamic quantities such as an internal energy, specific heat and a magnetic susceptibility
as well as spin configurations at various values of a and temperature T'.

We have obtained the results that for small values of & a spin configuration is the Neel
ordered state and at @ = 0.5, at which a spin configuration is degenerate in the classical
case, it is still the Neel state. For a > 0.6 we have observed that the spin configuration
in the low temperature region is a collinear. At present it is not certain that at 0K there
exits a phase transition from the Neel state to a collinear state by increasing a, or not.. In
order to obtain the definite conclusion on the behavior of the system near a = 0.6 in the

low temperature region, we have to enlarge the size of DC as well as a size of a system.
This will be the next problem.
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