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1. Background

Natural selection maintains protein’s stability and foldability over evolutionary
timescales. A protein folding theory based on the random energy model (REM)
indicates that the equilibrium ensemble of natural protein sequences is well represented
by a canonical ensemble characterized by exp(−∆GND/kBTs) or by exp(−GN/kBTs) if
an amino acid composition is kept constant, where ∆GND ≡ GN − GD , GN and GD are
the native and denatured free energies, and Ts is the effective temperature representing
the strength of selection pressure (Shakhnovich et al., 1993).

It has become clear that the distribution of homologous sequences (σ) in a protein
family can be well approximated by a Boltzmann distribution with exp(−ψN), where the
evolutionary statistical energy ψN(σ) ≡ −(

∑
i(hi(σi) +

∑
j>i Jij(σi , σj))) is represented as

the sum of one body (h) (compositional) and pairwise (J) (covariational) interactions
over all sites and site pairs (Figliuzzi et al., 2018).

In population biology, mutation and fixation processes of amino acids in protein
evolution are described in terms of fitness (Crow and Kimura, 1970).

These aspects about the distribution of homologous sequences should be unified.



2. Purposes of the present study

A purpose of the present study is to establish relationships between protein foldability/stability,
sequence distribution, and protein fitness.

1 We prove that if a mutational process in protein evolution is a reversible Markov process, the
equilibrium ensemble of genes will obey a Boltzmann distribution with exp(4Nem(1 − 1/(2N))),
where Ne and N are effective and actual population sizes, and m is the Malthusian fitness of a
gene. Relationships between ∆ψND , ∆GND , and m are obtained.

2 From the distribution of the change of ψN , ∆ψN , which results from single amino acid
substitutions, we estimate the effective temperature of natural selection (Ts) and then glass
transition temperature (Tg) and folding free energy (∆GND ) of protein on the basis of the REM.

3 Through analyzing the amino acid substitution process in protein evolution, which is characterized
by the fitness, m = −∆ψND/(4Ne(1 − 1/(2N))), we clarify the relationship between Ts and the
amino acid substitution rate, and evaluate the contribution of neutral substitutions under the
protein foldability/stability selection.



3-1. Knowledge of protein folding (Shakhnovich et al., 1993; Pande et al., 1997)

A protein folding theory based on a random energy model (REM) indicates:
The probability density of homologous sequence (σ),

P(σ) ∝ Pmut(σ) exp(
−∆GND(σ,T)

kBTs
) (1)

∝ exp(
−GN(σ)

kBTs
) if f(σ) = constant (2)

∆GND(σ,T) ≡ GN(σ) − GD(f(σ),T) (3)

where
pmut(σ) the probability of a sequence (σ) randomly occurring in a mutational process

and depends only on the amino acid frequencies f(σ)

GN and GD the free energies of the native conformation and denatured state.
The distribution of conformational energies in the denatured state is
approximated to be equal to the energy distribution of randomized sequences
in the native fold, which is then approximated by a Gaussian distribution.

T and Ts growth temperature and selective temperature representing
the strength of selection



3-2. Probability distribution of homologous sequences in sequence space

The probability distribution P(σ), with maximum entropy, of protein sequences
σ(≡ (σ1, · · · , σL ), which satisfies∑

σ
P(σ) δσiak = Pi(ak ) (4)∑

σ
P(σ) δσiak δσjal = Pij(ak , al) (5)

where σi , ak ∈ {amino acids, deletion}, can be represented as

P(σ) ∝ exp(−ψN(σ)) (6)

ψN(σ) ≡ −(
L∑
i

(hi(σi) +
∑
j>i

Jij(σi , σj))) (7)

where hi and Jij are one-body (compositional) and two-body (covariational) interactions.
Interactions hi and Jij for homologous sequences can be estimated from a multiple
sequence alignment (MSA) in the mean field approximation, or by maximizing a
pseudo-likelihood, or by MCMC simulation for a Boltzmann machine, and have been shown
to well describe the distributions of homologous sequences.



3-3. The equilibrium distribution of sequences in a mutation-fixation process

Assumption: The mutational process is a reversible Markov process; the mutation rate per
gene, Mµν, from sequence µ ≡ (µ1, · · · , µL ) to ν satisfies the detailed balance condition,

Pmut(µ)Mµν = Pmut(ν)Mνµ (8)

where Pmut(ν) is the equilibrium frequency of sequence ν in the mutational process, Mµν.

The substitution rate Rµν from µ to ν for diploid:

Rµν = 2NMµνu(s(µ→ ν)) (9)

2Nu(s) = 2N
1 − e−4Nesqm

1 − e−4Nes
=

u(s)

u(0)
with qm =

1
2N

(10)

s(µ→ ν) ≡ m(ν) −m(µ) (11)

where N and Ne are population size and effective population size, and u(s(µ→ ν)) is the
fixation probability of mutants from µ to ν the selective advantage of which is equal to s
[Crow and Kimura(1970)]. m(ν) is the Malthusian fitness of a mutant sequence (ν).



The equilibrium distribution of sequences in a mutation-fixation process

This Markov process of substitutions, which consists of mutation and fixation processes, in
sequence is reversible, and the equilibrium frequency of sequence µ, Peq(µ), is represented
by

Peq(µ) =
Pmut(µ) exp(4Nem(µ)(1 − qm))∑
ν Pmut(ν) exp(4Nem(ν)(1 − qm))

(12)

because both the mutation and fixation processes satisfy the detailed balance conditions,
Eq. 8 and the following equation, respectively.

exp(4Nem(µ)(1 − qm)) u(s(µ→ ν))

=
exp(−4Nem(µ)qm) − exp(−4Nem(ν)qm)

exp(−4Nem(µ)) − exp(−4Nem(ν))
(13)

= exp(4Nem(ν)(1 − qm)) u(s(ν→ µ)) (14)

As a result, the ensemble of homologous sequences in molecular evolution obeys a
Boltzmann distribution.



3-4. Relationships between m(σ), ∆ψND(σ,T), and ∆GND(σ,T) of protein
sequence

From Eqs. 1, 6, and 12 , we can get the following relationships among the Malthusian
fitness m, the folding free energy change ∆GND and ∆ψND of protein sequence.

Peq(µ) =
Pmut(µ) exp(4Nem(µ)(1 − qm))∑
ν Pmut(ν) exp(4Nem(ν)(1 − qm)))

(15)

=
Pmut(µ) exp(−(ψN(µ) − ψD(f(µ),T)))∑
ν Pmut(ν) exp(−(ψN(ν) − ψD(f(ν),T)))

(16)

'
Pmut(µ) exp(−∆GND(µ,T)/(kBTs))∑
ν Pmut(ν) exp(−∆GND(ν,T)/(kBTs))

(17)

where f(σ) ≡
∑
σ f(σ)P(σ) and log Pmut(σ) ≡

∑
σ P(σ) log(

∏
i Pmut(σi)). Then, the

following relationships are derived for sequences for which f(µ) = f(µ).

4Nem(µ)(1 − qm) = −∆ψND(µ,T) + constant (18)

'
−∆GND(µ,T)

kBTs
+ constant (19)



Relationships between s(µ→ ν), ∆ψN(µ→ ν), and ∆GN(µ→ ν) of protein
sequence

The selective advantage of ν to µ is represented as follows for f(µ) = f(ν) = f(σ).

4Nes(µ→ ν)(1 − qm) ≡ (4Nem(ν) − 4Nem(µ))(1 − qm) (20)

= −(∆ψND(ν,T) −∆ψND(µ,T)) = −(ψN(ν) − ψN(µ)) (21)

' −(∆GND(ν,T) −∆GND(µ,T))/(kBTs) = −(GN(ν) − GN(µ))/(kBTs) (22)

It should be noted here that only sequences for which f(σ) = f(σ) contribute significantly to
the partition functions in Eq. 16, and other sequences may be ignored.

Eqs. 21 and 22 indicate:

ψN ∝ Ne (23)

Ts ∝ 1/Ne , (24)

If ∆∆GND ' ∆GN due to single substitutions are known, we can estimate Ts from Eqs. 21
and 22. However, experiments/calculations to estimate the folding energy changes/native
free energy changes are not easy. Here we propose an alternative way to estimate Ts .



3-5. Denatured state

The distribution of conformational energies in the denatured state (molten globule state),
which consists of conformations as compact as the native conformation, is approximated in
the random energy model (REM), particularly the independent interaction model (IIM)
(Pande et al., 1997) to be equal to the energy distribution of randomized sequences, which
is then approximated by a Gaussian distribution, in the native conformation.

Z =

∫
exp(

−E
kBT

) n(E)dE where n(E) ≈ exp(ωL)N(Ē(f(σ)), δE2(f(σ))) (25)

where ω is the conformational entropy per residue in the compact denatured state, and
N(Ē(f(σ)), δE2(f(σ))) is the Gaussian probability density with mean Ē and variance δE2,
which depend only on the amino acid composition of the protein sequence. and are
estimated as the mean and variance of interaction energies of randomized sequences in the
native conformation.



Free energy of the denatured state

The free energy of the denatured state is approximated as follows.

GD(f(σ),T) ≈ Ē(f(σ)) −
δE2(f(σ))

2kBT
− kBTωL (26)

= Ē(f(σ)) − δE2(f(σ))
ϑ(T/Tg)

kBT
(27)

ϑ(T/Tg) ≡

 1
2 (1 + T2

T2
g

) for T > Tg

T
Tg

for T ≤ Tg
(28)

where Tg is the glass transition temperature of the protein at which entropy becomes zero
(Shakhnovich and Gutin, 1993); −∂GD/∂T |T=Tg = 0. The conformational entropy per residue
ω in the compact denatured state can be represented with Tg; ωL = δE2/(2(kBTg)2). Thus,
unless Tg < Tm, a protein will be trapped at local minima on a rugged free energy landscape
before it can fold into a unique native structure.



3-6. The ensemble average of ψN over sequences

The ensemble average of ∆GND(σ,T) over sequences with Eq. 1 is

〈∆GND(σ,T)〉σ (29)

≡ [
∑
σ

∆GND(σ,T)Pmut(σ) exp(−
∆GND(σ,T)

kBTs
) ] / [

∑
σ

Pmut(σ) exp(−
∆GND(σ,T)

kBTs
) ](30)

≈ 〈GN(σ)〉σ − GD(f(σN),T) (31)

where σN denotes a natural sequence, and f(σN) denotes the average of amino acid
frequencies f(σN) over homologous sequences.

The ensemble averages of GN and ψN(σ) are estimated in the Gaussian approximation
(Pande et al. 1997).

〈GN(σ)〉σ ≈

∫
E exp(−E/(kBTs)) n(E) dE∫
exp(−E/(kBTs)) n(E) dE

(32)

= Ē(f(σN)) − δE2(f(σN))/(kBTs) (33)

〈ψN(σ)〉σ ≈ ψ̄(f(σN)) − δψ2(f(σN)) (34)



The sample average of ψN over homologous sequences

The ensemble averages of ∆GND(σ,T) and ψN(σ) over sequences are observable as the
sample averages of ∆GND(σN ,T) and ψN(σN) over homologous sequences fixed in protein
evolution, respectively.

∆GND(σN ,T)/(kBTs) = 〈∆GND(σ,T)〉σ/(kBTs) (35)

≈ δψ2(f(σN)) [ϑ(T/Tg)Ts/T − 1 ] (36)

ψN(σN) ≡

∑
σN

wσNψN(σN)∑
σN

wσN

(37)

= 〈ψN(σ)〉σ (38)

where the overline denotes a sample average with a sample weight wσN for each
homologous sequence, which is used to reduce phylogenetic biases in the set of
homologous sequences.

The folding free energy becomes equal to zero at the melting temperature Tm;
〈∆GND(σN ,Tm)〉σ = 0.

ϑ(Tm/Tg)
Ts

Tm
=

Ts

2Tm
(1 +

T2
m

T2
g

) = 1 with Ts ≤ Tg ≤ Tm (39)



4. Results
4-1. Changes of the evolutionary statistical energy, ∆ψN, by single nucleotide
nonsynonymous substitutions

Fields hi and couplings Jij were estimated from a MSA of each protein family in the mean field
approximation with the DCA program (Marks et. al. 2011).

We calculated the ψN of the wildtype and ∆ψN due to all types of single nucleotide nonsynonymous
substitutions for all homologous sequences, and their means and variances.

The changes of the evolutionary statistical energy, ∆ψN and ∆ψD , due to a single amino acid
substitution from σN

i to σi at site i in a natural sequence σN are defined as

∆ψN(σN
j,i , σ

N
i → σi) ≡ ψN(σN

j,i , σi) − ψN(σN) (40)

∆ψD(σN
j,i , σ

N
i → σi ,T) ≡ ψD(f(σN

j,i , σi),T) − ψD(f(σN),T) (41)

∆∆ψND(σN
j,i , σ

N
i → σi ,T) ≡ ∆ψN(σN

j,i , σ
N
i → σi) −∆ψD(σN

j,i , σ
N
i → σi ,T) (42)

' ∆ψN(σN
j,i , σ

N
i → σi) because f(σN) ≈ f(σN

j,i , σi) (43)



Protein families, and structures studied.

Pfam family UniProt ID N a Neff
bc M d Meff

ce L f PDB ID
HTH_3 RPC1_BP434/7-59 15315(15917) 11691.21 6286 4893.73 53 1R69-A:6-58
Nitroreductase Q97IT9_CLOAB/4-76 6008(6084) 4912.96 1057 854.71 73 3E10-A/B:4-76 g

SBP_bac_3 h GLNH_ECOLI/27-244 9874(9972) 7374.96 140 99.70 218 1WDN-A:5-222
SBP_bac_3 GLNH_ECOLI/111-204 9712(9898) 7442.85 829 689.64 94 1WDN-A:89-182
OmpA PAL_ECOLI/73-167 6035(6070) 4920.44 2207 1761.24 95 1OAP-A:52-146
DnaB DNAB_ECOLI/31-128 1929(1957) 1284.94 1187 697.30 98 1JWE-A:30-127
LysR_substrate h BENM_ACIAD/90-280 25138(25226) 20707.06 85(1) 67.00 191 2F6G-A/B:90-280 g

LysR_substrate BENM_ACIAD/163-265 25032(25164) 21144.74 121(1) 99.27 103 2F6G-A/B:163-265 g

Methyltransf_5 h RSMH_THEMA/8-292 1942(1953) 1286.67 578(2) 357.97 285 1N2X-A:8-292
Methyltransf_5 RSMH_THEMA/137-216 1877(1911) 1033.35 975(2) 465.53 80 1N2X-A:137-216
SH3_1 SRC_HUMAN:90-137 9716(16621) 3842.47 1191 458.31 48 1FMK-A:87-134
ACBP ACBP_BOVIN/3-82 2130(2526) 1039.06 161 70.72 80 2ABD-A:2-81
PDZ PTN13_MOUSE/1358-1438 13814(23726) 4748.76 1255 339.99 81 1GM1-A:16-96
Copper-bind AZUR_PSEAE:24-148 1136(1169) 841.56 67(1) 45.23 125 5AZU-B/C:4-128 g

a The number of unique sequences and the total number of sequences in parentheses; the full alignments in the
Pfam[Finn et al.(2016)Finn, Coggill, Eberhardt, Eddy, Mistry, Mitchell, Potter, Punta, Qureshi, Sangrador-Vegas, Salazar, Tate, and Bateman] are used.
b The effective number of sequences.
c A sample weight (wσN ) for a given sequence is equal to the inverse of the number of sequences that are less than 20% different from the given
sequence.
d The number of unique sequences that include no deletion unless specified. The number in parentheses indicates the maximum number of deletions
allowed.
e The effective number of unique sequences that include no deletion or at most the specified number of deletions.
f The number of residues.
g Contacts are calculated in the homodimeric state for these protein.
h These proteins consist of two domains, and other ones are single domains.



Sample mean of ∆ψN lineary depends on ψN/L ,
but its standard deviation is almost constant.
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Correlation between ∆ψN due to single nucleotide nonsynonymous substitutions and ψN of
homologous sequences in the PDZ domain family.



Parameter values and sample mean and standard deviation of ∆ψN

Pfam family L pc nc
a rcutoff ψ̄/L b δψ2/L b ψN/L b ∆ψN

c Sd(∆ψN )± c rψN αψN rψN αψN
(Å ) Sd(Sd(∆ψN )) for ∆ψN

d for Sd(∆ψN ) e

HTH_3 53 0.18 7.43 8.22 −0.1997 2.7926 −2.9861 4.2572 5.3503 ± 0.5627 −0.961 −1.5105 −0.598 −0.9888
Nitroreductase 73 0.23 6.38 8.25 −0.1184 2.1597 −2.2788 3.3115 3.6278 ± 0.2804 −0.939 −1.3371 −0.426 −0.3721
SBP_bac_3 218 0.25 9.23 8.10 −0.1000 2.1624 −2.2618 3.2955 3.4496 ± 0.2742 −0.980 −1.5286 −0.841 −0.7876
SBP_bac_3 94 0.37 8.00 7.90 −0.1634 1.2495 −1.4054 1.9291 2.3436 ± 0.1901 −0.959 −1.3938 −0.634 −0.4815
OmpA 95 0.169 8.00 8.20 −0.2457 3.9093 −4.1542 6.5757 7.6916 ± 0.3078 −0.957 −1.5694 −0.410 −0.3804
DnaB 98 0.235 9.65 8.17 −0.2284 3.9976 −4.2291 6.3502 6.1244 ± 0.3245 −0.965 −1.4509 −0.495 −0.4198
LysR_substrate 191 0.235 8.59 7.98 −0.2241 1.4888 −1.7173 2.2784 2.6519 ± 0.1445 −0.964 −1.3347 −0.541 −0.5664
LysR_substrate 103 0.265 8.84 8.25 −0.2244 1.4144 −1.6379 2.2110 2.7371 ± 0.2055 −0.982 −1.4159 −0.727 −0.5307
Methyltransf_5 285 0.13 7.99 7.78 −0.1462 7.2435 −7.3887 12.4689 10.9352 ± 0.3030 −0.981 −1.9140 −0.122 −0.0783
Methyltransf_5 80 0.18 6.78 7.85 −0.1763 5.5162 −5.6896 8.9849 7.6133 ± 0.4382 −0.944 −1.4824 0.125 0.1141
SH3_1 48 0.14 6.42 8.01 −0.1348 3.9109 −4.0434 5.5792 6.1426 ± 0.2935 −0.919 −1.4061 −0.196 −0.1718
ACBP 80 0.22 9.17 8.24 −0.0525 4.6411 −4.7084 7.7612 7.1383 ± 0.2970 −0.972 −1.5884 −0.335 −0.2235
PDZ 81 0.205 9.06 8.16 −0.2398 3.1140 −3.3572 4.7589 4.6605 ± 0.2255 −0.954 −1.5282 −0.369 −0.3042
Copper-bind 125 0.23 9.50 8.27 −0.0940 4.2450 −4.3272 7.2650 6.9283 ± 0.2316 −0.980 −1.8915 −0.282 −0.2352

a The average number of contact residues per site within the cutoff distance; the center of side chain is used to represent a residue.
b M unique sequences with no deletions are used with a sample weight (wσN ) for each sequence; wσN is equal to the inverse of the number of sequences that are less than
20% different from a given sequence. The M and the effective number Meff of the sequences are listed for each protein family in Table ??.
c The averages of ∆ψN and Sd(∆ψN ), which are the mean and the standard deviation of ∆ψN for a sequence, and the standard deviation of Sd(∆ψN ) over homologous
sequences. Representatives of unique sequences with no deletions, which are at least 20% different from each other, are used; the number of the representatives used is
almost equal to Meff.
d The correlation and regression coefficients of ∆ψN on ψN/L ; see Eq. 44.
e The correlation and regression coefficients of Sd(∆ψN ) on ψN/L .



Sample mean and standard deviation of ∆ψN

Sample mean ∆ψN is negatively proportional to the ψN/L of the wildtype:

∆∆ψND(σN
j,i , σ

N
i → σi) ' ∆ψN(σN

j,i , σ
N
i → σi)

≈ αψN

ψN(σN) − ψN(σN)

L
+ ∆ψN(σN

j,i , σ
N
i → σi) with αψN < 0 (44)

where L is sequence length.

The standard deviation is almost constant:

Sd(∆ψN(σN
j,i , σ

N
i → σi)) ≈ independent of ψN and

constant across homologous sequences in every protein family

= function of kBTs (45)



Effective temperature Ts of selection is estimated from the changes of interaction,
∆ψN, due to single nucleotide nonsynonymous substitutions

Sd(∆ψN(σN
j,i , σ

N
i → σi)) ≈ independent of ψN and

constant across homologous sequences in every protein family

= function of kBTs (46)

Sd(∆GN(σN
j,i , σ

N
i → σi)) = function that must not explicitly depend on kBTs but GN (47)

From the equations above, we obtain the important relation that the standard deviation of
∆GN(' kBTs∆ψN) does not depend on GN and is nearly constant irrespective of protein families.

Sd(∆GN(σN
j,i , σ

N
i → σi)) ' kBTs Sd(∆ψN(σN

j,i , σ
N
i → σi))

≈ constant (48)

PDZ protein is employed as a reference protein to estimate kBTs for other proteins.

kB T̂s = kB T̂s, PDZ [ Sd(∆ψPDZ(σN
j,i , σ

N
i → σi)) /Sd(∆ψN(σN

j,i , σ
N
i → σi)) ] (49)

where the overline denotes the average over all homologous sequences.



4-2. A direct comparison of ∆ψN(' ∆∆ψND) with the experimental ∆∆GND to
estimate kBTs for the reference protein, PDZ.
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4-3. Thermodynamic quantities estimated with rcutoff ∼ 8 Å.

Experimental
Pfam family r a kB T̂s

a T̂s Tm T̂g ω̂ b T c 〈∆GND 〉
d

(kcal/mol) (◦K) (◦K) (◦K) (kB ) (◦K) (kcal/mol)

HTH_3 – – 122.6 343.7 160.1 0.8182 298 −2.95
Nitroreductase – – 180.7 337 204.0 0.8477 298 −2.81
SBP_bac_3 – – 190.1 336.1 211.0 0.8771 298 −8.03
SBP_bac_3 – – 279.8 336.1 283.8 0.6072 298 −.85
OmpA – – 85.2 320 125.4 0.9027 298 −3.13
DnaB – – 107.1 312.8 142.1 1.1341 298 −2.56
LysR_substrate – – 247.3 338 256.7 0.6908 298 −3.63
LysR_substrate – – 239.6 338 250.4 0.6472 298 −2.00
Methyltransf_5 – – 60.0 375 110.5 1.0656 298 −41.36
Methyltransf_5 – – 86.1 375 135.1 1.1214 298 −11.48
SH3_1 0.865 0.1583 106.7 344 147.4 1.0253 295 −3.76
ACBP 0.825 0.1169 91.9 324.4 131.7 1.1281 278 −6.72
PDZ 0.931 0.2794 140.7 312.88 168.5 1.0854 298 −1.81
Copper-bind 0.828 0.1781 94.6 359.3 139.9 0.9709 298 −12.07

a Reflective correlation (r) and regression (kB T̂s ) coefficients for least-squares regression lines of experimental
∆∆GND on ∆ψN through the origin.
b Conformational entropy per residue, in kB units, in the denatured molten-globule state; ω = (Ts/Tg)2δψ2/(2L)
d Folding free energy in kcal/mol units; 〈∆GND (σ,T)〉σ/(kB Ts) ≈ δψ2(f(σN)) [ϑ(T/Tg)Ts/T − 1 ]



The values of Tg estimated from the estimated Ts and experimental Tm

satisfy the condition for protein folding, Ts < Tg < Tm.
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The values of 〈∆GND(σ,T)〉σ estimated from the estimated Ts and experimental
Tm almost agree with their experimental values.
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Folding free energies, 〈∆GND〉σ ' kBTs〈∆ψND〉σ, predicted by the present method are plotted
against their experimental values, ∆GND(σN).



4-4. The equilibrium state of evolutionary statistical energy ψN in the
mutation–fixation process of amino acid substitutions

Monoclonal approximation for the fixation process of amino acid substitutions:
Protein evolution is assumed to proceed with a single amino acid substitution fixed at a time in a
population.

Equilibrium condition for ∆ψND and ψN :

〈∆∆ψND〉fixed ' 〈∆ψN〉fixed = 0 ⇐⇒ ∆ψND and ψN are at equilibrium. (50)

The PDF of ∆∆ψND in fixed mutants is proportional to that multiplied by the fixation probability.

p(∆∆ψND,fixed) = p(∆∆ψND)
u(s(∆∆ψND))

〈u(s(∆∆ψND))〉
(51)

〈u(s(∆∆ψND))〉 ≡

∫ ∞

−∞

u(s(∆∆ψND))p(∆∆ψND)d∆∆ψND (52)

The selective advantage of µ to w ildtype is represented as follows for f(w) = f(µ) = f(σ).

4Nes(w → µ)(1 − qm) ≡ (4Nem(µ) − 4Nem(w))(1 − qm) (53)

= −(∆ψND(µ,T) −∆ψND(w ,T)) = −(ψN(µ) − ψN(w)) (54)

' −(∆GND(µ,T) −∆GND(w ,T))/(kBTs) = −(GN(µ) − GN(w))/(kBTs) (55)



4-5. The observed frequency distribution of ∆ψN can be well approximated by a
log-normal distribution.
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The observed frequency distribution and the fitted distributions of ∆ψN in the PDZ protein
family. Only representatives of unique sequences with no deletions, which are at least 20% different
from each other, are employed; the total count is equal to 222,466 over 335 homologous sequences.



Approximation of the observed frequency distribution of ∆ψN with a log-normal

The equilibrium condition is calculated by approximating the probability density of ∆ψN with a
log-normal distribution.

p(∆ψN) ≈ lnN(x; µ, σ) ≡
1
x
N(ln x; µ, σ) (56)

x ≡ max(∆ψN −∆ψo
N , 0) (57)

exp(µ + σ2/2) = ∆ψN −∆ψo
N (58)

exp(2µ + σ2)(exp(σ2) − 1) = (∆ψN −∆ψN)2) (59)

∆ψo
N ≡ min(∆ψN − nshift(∆ψN −∆ψN)2)1/2, 0) (60)

where ∆ψo
N is the origin for the log-normal distribution and the shifting factor nshift is taken to be equal

to 2, unless specified. The parameters for a log-normal distribution are determined by employing the
regression line of ∆ψN on ψN and Sd(∆ψN) observed in respective protein families.

∆ψN ≈ αψN

ψN(σN) − ψN(σN)

L
+ ∆ψN(σN

j,i , σ
N
i → σi) with αψN < 0 (61)

(∆ψN −∆ψN)2
1/2

≈ (∆ψN(σN
j,i , σ

N
i → σi) −∆ψN(σN

j,i , σ
N
i → σi))2

1/2

(62)



4-6. Evolutionary statistical energy ψN in the mutation–fixation process of amino
acid substitutions has a stable equilibrium value, because ∆ψN and therefore
〈∆ψN〉fixed are decreasing functions of ψN/L .
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The average of ∆ψN(' ∆∆ψND) over fixed single nucleotide nonsynonymous mutations versus
ψN/L of a wildtype for the PDZ protein family.



4-7. The equilibrium value of ψN almost agrees with the sample average of ψN over
all homologous sequences.
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The equilibrium value of ψN/L , where 〈∆ψN〉fixed = 0, is plotted against the average of ψN/L over
homologous sequences for each protein family.



4-8. The relationship between the standard deviation and the mean of ∆ψN at the
equilibrium state of ψN
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Relationship between the mean and the standard deviation of ∆ψN due to single nucleotide
nonsynonymous mutations at equilibrium, 〈∆ψN〉fixed = 0



The relationship between Ts and the mean of ∆ψN at the equilibrium state of ψN
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Relationships between T̂s and ∆ψN and between kB T̂s∆ψN(' ∆∆GND) and ∆ψN at equilibrium,
〈∆ψN〉fixed = 0.



4-9. Probability distributions of selective advantage, fixation rate, and Ka/Ks

Let us consider the PDFs of characteristic quantities that describe the evolution of genes.
The PDF of 4Nes:

p(4Nes) = p(∆∆ψND) |
d∆∆ψND

d4Nes
| = p(∆∆ψND)(1 − qm) (63)

where ∆∆ψND must be regarded as a function of 4Nes, that is, ∆∆ψND = −4Nes(1 − qm); see
Eq. 21.
The PDF of fixation probability u:

p(u) = p(4Nes)
d4Nes

du
= p(4Nes)

(e4Ne s − 1)2e4Ne s(qm−1)

qm(e4Ne s − 1) − (e4Ne sqm − 1)
(64)

where 4Nes must be regarded as a function of u.
The ratio of the nonsynonymous substitution rate per nonsynonymous site (Ka ) with selective
advantage s to the substitution rate per synonymous site (Ks) with s = 0

Ka

Ks
=

u(s)

u(0)
=

u(s)

qm
, p(Ka/Ks) = p(u)

du
d(Ka/Ks)

= p(u) qm (65)

assuming that synonymous substitutions are completely neutral and mutation rates at both types
of sites are the same.



Probability distributions of ∆∆ψND , 4Nes, u, and Ka/Ks in fixed mutant genes

The PDF of ∆∆ψND in fixed mutants is proportional to that multiplied by the fixation probability.

p(∆∆ψND,fixed) = p(∆∆ψND)
u(s(∆∆ψND))

〈u(s(∆∆ψND))〉
(66)

〈u(s(∆∆ψND))〉 ≡

∫ ∞

−∞

u(s(∆∆ψND))p(∆∆ψND)d∆∆ψND (67)

Likewise, the PDF of selective advantage in fixed mutants is

p(4Nesfixed) = p(4Nes)
u(s)

〈u(s)〉
(68)

and those of the u and Ka/Ks in fixed mutants are

p(ufixed) = p(u)
u
〈u〉

(69)

p((
Ka

Ks
)fixed) = p(

Ka

Ks
)

u
〈u〉

= p(
Ka

Ks
)

Ka
Ks

〈
Ka
Ks
〉

(70)

The average of Ka/Ks in fixed mutants is equal to the ratio of the second moment to the first moment of
Ka/Ks in all arising mutants; 〈Ka/Ks〉fixed = 〈(Ka/Ks)2〉/〈Ka/Ks〉.



4-10. PDFs of ∆ψN and Ka/Ks as a function of ∆ψN
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PDFs of ∆ψN (left) and Ka/Ks (right) in all singe nucleotide nonsynonymous mutants (upper)
and in their fixed mutants (lower) as a function of ∆ψN at equilibrium, 〈∆ψN〉fixed = 0.



4-11. The probability of neutral (0.95 < Ka/Ks < 1.05) selection category is
insignificant in fixed mutations.
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The probabilities of each selection category in all single nucleotide nonsynonymous mutations
and in their fixed mutations as a function of ∆ψN at equilibrium, 〈∆ψN〉fixed = 0.



〈Ka/Ks〉 < 1 in arising mutations, although 〈Ka/Ks〉fixed > 1 in fixed mutations.
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The averages of Ka/Ks over all single nucleotide nonsynonymous mutations and over their
fixed mutations as a function of ∆ψN at equilibrium, 〈∆ψN〉fixed = 0.



4-12. 〈Ka/Ks〉 as a function of Ts at the equilibrium state of ψN
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The averages of Ka/Ks over all single nucleotide nonsynonymous mutations and over their
fixed mutations as a function of the effective temperature of selection,
Ts(= (TsSd(∆ψN))PDZ/Sd(∆ψN)), at equilibrium, 〈∆ψN〉fixed = 0.



5. Summary

A Boltzmann distribution with protein fitness is derived under the assumption that amino acid
substitutions are at equilibrium in a reversible Markov process.

Relationships are obtained for folding free energy, folding statistical energy and fitness.

Selective temperature, and then, glass transition temperature and folding free energy are
estimated for 14 protein domains with the estimated Ts and experimental Tm. Their estimated
values fall in a reasonable range.

The equilibrium value of ψN at 〈∆ψN〉fixed = 0 well agrees with the mean of ψN over all the
homologous sequences in each protein family, indicating the consistency of the present theory.

Selective temperature is directly related to substitution rate (Ka/Ks).

Protein stability and foldability are kept in a balance of positive selection and random drift.

Positive and negative mutations are significantly fixed in stability/foldability selection, supporting
the nearly neutral theory rather than the neutral theory for protein evolution.


