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1. Background

o Natural selection maintains protein’s stability and foldability over evolutionary
timescales. A protein folding theory based on the random energy model (REM)
indicates that the equilibrium ensemble of natural protein sequences is well represented
by a canonical ensemble characterized by exp(—AGnp/kg Ts) or by exp(—Gn/ksTs) if
an amino acid composition is kept constant, where AGyp = Gy — Gp, Gy and Gp are
the native and denatured free energies, and T; is the effective temperature representing
the strength of selection pressure (Shakhnovich et al., 1993).

@ It has become clear that the distribution of homologous sequences (o) in a protein
family can be well approximated by a Boltzmann distribution with exp(—¢y), where the
evolutionary statistical energy yn (o) = —(X;(hi(oi) + Xjsi Jj(oi. 0;))) is represented as
the sum of one body (h) (compositional) and pairwise (J) (covariational) interactions
over all sites and site pairs (Figliuzzi et al., 2018).

@ In population biology, mutation and fixation processes of amino acids in protein
evolution are described in terms of fitness (Crow and Kimura, 1970).

These aspects about the distribution of homologous sequences should be unified.



2. Purposes of the present study

A purpose of the present study is to establish relationships between protein foldability/stability,
sequence distribution, and protein fitness.

@ We prove that if a mutational process in protein evolution is a reversible Markov process, the
equilibrium ensemble of genes will obey a Boltzmann distribution with exp(4Nem(1 - 1/(2N))),
where N, and N are effective and actual population sizes, and m is the Malthusian fitness of a
gene. Relationships between Aynp, AGnp, and m are obtained.

@ From the distribution of the change of ¥y, Ay, which results from single amino acid
substitutions, we estimate the effective temperature of natural selection (Ts) and then glass
transition temperature (Tg) and folding free energy (AGup) of protein on the basis of the REM.

© Through analyzing the amino acid substitution process in protein evolution, which is characterized
by the fitness, m = —Aynp /(4N (1 — 1/(2N))), we clarify the relationship between T and the
amino acid substitution rate, and evaluate the contribution of neutral substitutions under the
protein foldability/stability selection.



3-1. Knowledge of protein folding (Shakhnovich et al., 1993; Pande et al., 1997)

A protein folding theory based on a random energy model (REM) indicates:
The probability density of homologous sequence (o),

-AG , T
Plo) « Pr()exp(—2onel 1), m
kB Ts
o exp(M) if f(o-) = constant (2)
kB Ts
AGnp(o, T) = Gn(o) - Gp(f(o), T) (3)
where
p™(o) the probability of a sequence (o) randomly occurring in a mutational process

and depends only on the amino acid frequencies f(o)

Gy and Gp the free energies of the native conformation and denatured state.
The distribution of conformational energies in the denatured state is
approximated to be equal to the energy distribution of randomized sequences
in the native fold, which is then approximated by a Gaussian distribution.

T and Tg growth temperature and selective temperature representing
the strength of selection



3-2. Probability distribution of homologous sequences in sequence space

The probability distribution P(cr), with maximum entropy, of protein sequences
o(= (o1, -+ ,0L), which satisfies

D P(0)6ra = Pila)
T
ZP(U)éo'iakélT/al = Pij(aka al)
g

where o, ax € {amino acids, deletion}, can be represented as

P(o) o« exp(-yn(0))

~(Q (o) + D dilor. )

i j>i

Yn(o)

where h; and J; are one-body (compositional) and two-body (covariational) interactions.
Interactions h; and J; for homologous sequences can be estimated from a multiple

sequence alignment (MSA) in the mean field approximation, or by maximizing a

pseudo-likelihood, or by MCMC simulation for a Boltzmann machine, and have been shown

to well describe the distributions of homologous sequences.



3-3. The equilibrium distribution of sequences in a mutation-fixation process

Assumption: The mutational process is a reversible Markov process; the mutation rate per
gene, Myy, from sequence u = (u1,--- , ) to v satisfies the detailed balance condition,

P™(W)Muy = P™(v)Myy (8)
where P™!(v) is the equilibrium frequency of sequence v in the mutational process, Myy.

The substitution rate Ryy from u to v for diploid:

Rﬂv = 2NMﬂvU(S(/.l - V)) 9)

B 1— e Hesin  y(s) . B
2Nu(s) = 2N e~ 50) with g, = 3N (10)
s(u—v) = m(v)-m(u) (11)

where N and N, are population size and effective population size, and u(s(u — v)) is the
fixation probability of mutants from u to v the selective advantage of which is equal to s
[Crow and Kimura(1970)]. m(v) is the Malthusian fitness of a mutant sequence (v).



The equilibrium distribution of sequences in a mutation-fixation process

This Markov process of substitutions, which consists of mutation and fixation processes, in
sequence is reversible, and the equilibrium frequency of sequence u, P*(u), is represented
by

P™!(u) exp(4Nem(p)(1 — Gm))
2y Pmi(v) exp(4Nem(v)(1 — Gm))

because both the mutation and fixation processes satisfy the detailed balance conditions,
Eq. 8 and the following equation, respectively.

P(u)

(12)

exp(4Nem(p)(1 = gm)) u(s(p — v))
exp(—4Nem()qm) — exp(—4Nem(v)qm)
eXp(_4Nem(ﬂ)) - eXp(_4Nem(V))
exp(4Nem(v)(1 = gm)) u(s(v — 1)) (14)

As a result, the ensemble of homologous sequences in molecular evolution obeys a
Boltzmann distribution.



3-4. Relationships between m(o-), Aynp (o, T), and AGnp(o, T) of protein

sequence

From Egs. 1,6, and 12, we can get the following relationships among the Malthusian
fitness m, the folding free energy change AGnp and Aynp of protein sequence.

P exp(dNam(u)(1 — Gi)
PRI = S i) exp(@Nem() (1 — am))) =

__P™() exp(=(un(u) — Yo (f(n). T))) (16)
2y Pm(v) exp(=(un(v) — ¥o(f(v). T)))
P™ (i) exp(~AGnp (u. T)/(ksTs))
2y Pm(v) exp(-AGnp(v. T)/(ksTs))
where f(0) = Y f(0)P(0) and log P™(@) = Y- P(07) log([T; P™(c)). Then, the

following relationships are derived for sequences for which f(u) = f(u).

4Nem(p)(1 = qm)

—Aynp(p, T) + constant (18)

-AG , T
~ M + constant (19)
ke Ts



Relationships between s(u — v), Ayn(u — v), and AGn(p — v) of protein
sequence

The selective advantage of v to u is represented as follows for f(u) = f(v) = (o)
4Nes(u — v)(1 = gm) = (4Nem(v) — 4Nem(p))(1 = Gm)

= —(Ayno(v. T) = Aynp(p. T)) = —(Un(v) — ¥n(n)) (21)

—(AGnp (v, T) - AGnp (1, T))/ (ke Ts) = =(Gn(v) - Gn(w))/ (ks Ts)  (22)

It should be noted here that only sequences for which f(o) = f(o-) contribute significantly to
the partition functions in Eq. 16, and other sequences may be ignored.

(20)

Egs. 21 and 22 indicate:

UN o Ne
Ts oo 1/Ne,
If AAGnp = AGy due to single substitutions are known, we can estimate T from Egs. 21

and 22. However, experiments/calculations to estimate the folding energy changes/native
free energy changes are not easy. Here we propose an alternative way to estimate T;.



3-5. Denatured state

The distribution of conformational energies in the denatured state (molten globule state),
which consists of conformations as compact as the native conformation, is approximated in
the random energy model (REM), particularly the independent interaction model (IIM)
(Pande et al., 1997) to be equal to the energy distribution of randomized sequences, which
is then approximated by a Gaussian distribution, in the native conformation.

z - f exp(k_B—l:;_)n(E)dE where  n(E) ~ exp(wL)N(E(f(0)), 6E2(F(0))) (25)

where w is the conformational entropy per residue in the compact denatured state, and
N(E(f(0)),E?(f(0))) is the Gaussian probability density with mean E and variance 6E?,
which depend only on the amino acid composition of the protein sequence. and are
estimated as the mean and variance of interaction energies of randomized sequences in the
native conformation.



Free energy of the denatured state

The free energy of the denatured state is approximated as follows.

_ OE*(f(e))

GD(f(O'), T) = l::(f(a)) W —kgTwL (26)
_ 9T,
= E(f(0)) - 6E2(f(0)) (ka/ Tg) (27)
1+L) forT>T,
= 2 T2
ﬁ(T/Tg) - { TTQ for T< Ty (28)

where T, is the glass transition temperature of the protein at which entropy becomes zero
(Shakhnovich and Gutin, 1993); -dGp/dT|r=71, = 0. The conformational entropy per residue
w in the compact denatured state can be represented with Ty; wL = 6E?/(2(kg Tg)?). Thus,
unless Ty < T, a protein will be trapped at local minima on a rugged free energy landscape
before it can fold into a unique native structure.



3-6. The ensemble average of ¥y over sequences

The ensemble average of AGnp (o, T) over sequences with Eq. 1 is

<AGND(0', T)>g' (29)
, T
= [ AGuo(o- T)P™(0r) exp(- =50 T) 1/[2 P(r)exp( - LT Ty
o s
~ (Gn(0))o — Go(f(on), T) (31)

where o denotes a natural sequence, and (o-N) denotes the average of amino acid
frequencies f(on) over homologous sequences.

The ensemble averages of Gy and ¥ (o) are estimated in the Gaussian approximation

(Pande et al. 1997).
J Eexp(—E/(kgTs)) n(E) dE a9
[ exp(~E/(ks Ts)) n(E) dE (82)

= E(f(on)) - 6E?(f(on))/(keTs) (33)

Wn(e)o =~ U(f(on)) - o3 (fon)) (34)

(Gn(o))or




The sample average of ¥ over homologous sequences

The ensemble averages of AGnp(o, T) and yn(o7) over sequences are observable as the
sample averages of AGnp(on, T) and yn(on) over homologous sequences fixed in protein
evolution, respectively.

AGnp(on. T)/(keTs) = (AGnp(o, T))o/(keTs) (335)
SyP(f(orn)) [9(T/Tg)Ts/T = 1] (36)
_ ZoyWo¥n(on)
yn(on) = o Wor (37)
= Wn(o)o (38)

where the overline denotes a sample average with a sample weight wg-, for each
homologous sequence, which is used to reduce phylogenetic biases in the set of
homologous sequences.

The folding free energy becomes equal to zero at the melting temperature Tp,;
(AGnp(oN, Tm))or = 0.

T Ts

N/ Tg)— = T
meeT T 2Ty

TS

(1+=)=1 withTs<Ty<Tph (39)



4. Results
4-1. Changes of the evolutionary statistical energy, Ay, by single nucleotide

nonsynonymous substitutions

Fields h; and couplings J; were estimated from a MSA of each protein family in the mean field
approximation with the DCA program (Marks et. al. 2011).

We calculated the yy of the wildtype and Ay due to all types of single nucleotide nonsynonymous
substitutions for all homologous sequences, and their means and variances.

The changes of the evolutionary statistical energy, Ay and Ay p, due to a single amino acid
substitution from o-?’ to o at site i in a natural sequence oy are defined as

Ayn(o #,,0' —oi) = yn( j':’&,-,o'i) —¥n(ow) (40)
Ayp(opypot = o T) = yo(f(o}.00). T) = vo(f(ow). T) (41)
AAYnp (o #,,0' o, T) = Ayn( j#,(rfl — o) — Ayp( l-’i,,o'(\’ -0, T) (42)
= Ayn(oh,. o) — o)  because f(on) ~ f(o )y, o) (43)



Protein families, and structures studied.

Pfam family UniProt ID Na Nggr 2 [VE Mer® LT PDBID

HTH_3 RPC1_BP434/7-59 15315(15917) 11691.21 6286 4893.73 53 1R69-A:6-58
Nitroreductase Q97IT9_CLOAB/4-76 6008(6084) 4912.96 1057 854.71 73 3E10-A/B:4-76 9
SBP_bac_3" GLNH_ECOLI/27-244 9874(9972) 7374.96 140 99.70 218 1WDN-A:5-222
SBP_bac_3 GLNH_ECOLI/111-204 9712(9898) 7442.85 829 689.64 94 1WDN-A:89-182
OmpA PAL_ECOLI/73-167 6035(6070) 4920.44 2207 1761.24 95 10AP-A:52-146
DnaB DNAB_ECOLI/31-128 1929(1957) 1284.94 1187 697.30 98 1JWE-A:30-127
LysR_substrate " BENM_ACIAD/90-280 25138(25226)  20707.06 85(1) 67.00 191 2F6G-A/B:90-280 9
LysR_substrate BENM_ACIAD/163-265 25032(25164) 21144.74 121(1) 99.27 103 2F6G-A/B:163-265 9
Methyltransf_5 " RSMH_THEMA/8-292 1942(1953) 1286.67  578(2) 357.97 285 1N2X-A:8-292
Methyltransf_5 RSMH_THEMA/137-216 1877(1911) 1033.35 975(2) 465.53 80 1N2X-A:137-216
SH3_1 SRC_HUMAN:90-137 9716(16621) 3842.47 1191 458.31 48 1FMK-A:87-134
ACBP ACBP_BOVIN/3-82 2130(2526) 1039.06 161 70.72 80 2ABD-A:2-81

PDz PTN13_MOUSE/1358-1438 13814(23726) 4748.76 1255 339.99 81 1GM1-A:16-96
Copper-bind AZUR_PSEAE:24-148 1136(1169) 841.56 67(1) 45.23 125 5AZU-B/C:4-128 9

2 The number of unique sequences and the total number of sequences in parentheses; the full alignments in the
Pfam[Finn et al.(2016)Finn, Coggill, Eberhardt, Eddy, Mistry, Mitchell, Potter, Punta, Qureshi, Sangrador-Vegas, Salazar, Tate, and Bateman] are used.
b The effective number of sequences.
¢ A sample weight (wgr,) for a given sequence is equal to the inverse of the number of sequences that are less than 20% different from the given

sequence.

9 The number of unique sequences that include no deletion unless specified. The number in parentheses indicates the maximum number of deletions

allowed.
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Sample mean of Ay lineary depends on /L,

but its standard deviation is almost constant.

o b b b b b b b
L B L e

-1 -0.6 -0.2 _ 0.2 0.6 1
Wy - W)/L
Correlation between Ay due to single nucleotide nonsynonymous substitutions and ¢ of
homologous sequences in the PDZ domain family.



Parameter values and sample mean and standard deviation of Ay

Pfam family L Pc Nc? Ioytoff gL sy/Lb wn/LD Ayn © Sd(Ayy) = © iy gy Tun

A) Sd(Sd(Av)) for Ay ¢ for Sd(Ayy)
HTH_3 53 0.18 743 822  —0.1997 27926  —2.9861 42572 53503+ 05627 —0.961 —15105 —0598  —0.
Nitroreductase 73 023  6.38 825  —0.1184 21597  -2.2788 3.3115 36278 £+0.2804 —0.939  -1.3371  -0426 0.
SBP_bac_3 218 025 923 810  —0.1000 21624  -2.2618 3.2955 34496 +0.2742 0980 -15286  —0.841  —0.]
SBP_bac_3 94 037  8.00 7.90  -0.1634 1.2495  —1.4054 1.9291 23436 +0.1901  —0.959  -1.3938  -0.634  —0.
OmpA 95 0169  8.00 820  —0.2457 39093  -4.1542 6.5757 76916 +0.3078  —0.957 -15694  -0410  —0.
DnaB 98 0235 965 817  -0.2284 39976  —-4.2291 6.3502 6.1244 +0.3245  —0.965 —1.4509  -0.495  —0.
LysR_substrate 191 0235 859 7.98  -0.2241 14888  -1.7173 22784 26519+0.1445 0964  —13347  -0541  —0.
LysR_substrate 103  0.265  8.84 825  —0.2244 14144 16379 22110 27371 +0.2055  —0.982  -1.4159  -0.727  —0.
Methyltransf_5 285 013  7.99 7.78  -0.1462 7.2435  -7.3887 124689  10.9352+0.3030 -0.981  -1.9140 -0.122  —0.
Methyltransf_5 80 018  6.78 785  -0.1763 55162  —-5.6896 8.9849 7.6133+0.4382  —0.944  —1.4824 0.125 0.
SH3_1 48 0.14  6.42 801  —0.1348 39109  -4.0434 5.5792 6.1426 +0.2935  -0.919  -1.4061  -0.196  —0.
ACBP 80 022 917 824  -0.0525 46411  —4.7084 7.7612 7.1383+0.2970 0972  -15884  -0.335 0.
PDZ 81 0205  9.06 816  —0.2398 31140  -3.3572 4.7589 46605+ 0.2255 0954 15282  -0.369 0.
Copper-bind 125 023 950 827  —0.0940 42450  —4.3272 7.2650 6.9283+0.2316 0980 -1.8915 -0.282 0.

@ The average number of contact residues per site within the cutoff distance; the center of side chain is used to represent a residue.

bm unique sequences with no deletions are used with a sample weight (wry, ) for each sequence; wor), is equal to the inverse of the number of sequences that are less than
20% different from a given sequence. The M and the effective number Mgy of the sequences are listed for each protein family in Table ??.

¢ The averages of Ay and Sd(Ayy), which are the mean and the standard deviation of Ay for a sequence, and the standard deviation of Sd(A ) over homologous
sequences. Representatives of unique sequences with no deletions, which are at least 20% different from each other, are used; the number of the representatives used is
almost equal to Mg

d The correlation and regression coefficients of Ay on yy/L; see Eq. 44.

€ The correlation and regression coefficients of Sd(Ayy) on ¥y /L.




Sample mean and standard deviation of Ay

@ Sample mean Ay is negatively proportional to the /L of the wildtype:

AAYnp (o #,,0' - o) = Ayn(o #‘,o' - o)

g - a .
c Mw + DU o S o) with g, <0 (44)

where L is sequence length.

@ The standard deviation is almost constant:

independent of ¥y and

Q

Sd(Ag{/N(O'I’.i,, o = ay))
constant across homologous sequences in every protein family
= function of kg Ts (45)



Effective temperature Ts of selection is estimated from the changes of interaction,

Ay, due to single nucleotide nonsynonymous substitutions

Q

independent of ¥y and
constant across homologous sequences in every protein family

= function of kg T; (46)
Sd(AGn( m,o’?’ — 03)) = function that must not explicitly depend on kg T but Gy (47)

(AWN( ]#I’O-IN - O-i))

From the equations above, we obtain the important relation that the standard deviation of
AGn(= ks TsAyy) does not depend on Gy and is nearly constant irrespective of protein families.

(AGN( [il’o— _)0-')) = kBTSsd(AIﬁN( j#l’o- _)O-l))
~ constant (48)

PDZ protein is employed as a reference protein to estimate kg T, for other proteins.

keTs = kBTs poz [ SA(A¢ppz(o R,,O' — 07))/ Sd(Ayn(o m’o-:N — )] (49)

where the overline denotes the average over all homologous sequences.



4-2. A direct comparison of Ayn(~ AAynp) with the experimental AAGnp to

estimate kg T for the reference protein, PDZ.

6 | | |

Experimental AAG,,  (kcal/mol)
[
|

2 T T T T T
-5 0 5 10 15 20
Ay (~ AAy )
Regression of the experimental values (Gianni et al., 2007) of folding free energy changes
(AAGnp) due to single amino acid substitutions on Ay (=~ AAyyp) for the same types of
substitutions in the PDZ domain.



4-3. Thermodynamic quantities estimated with r,,.; ~ 8 A.

Experimental

Pfam family ra ksTs @ Ts Tm Ty b TS (AGwp)Y

(kcal/mol) (°K) (°K) (°K) (kg) (°K)  (kcal/mol)
HTH_3 - - 1226 3437 1601 0.8182 298 —2.95
Nitroreductase - - 180.7 337 204.0 0.8477 298 -2.81
SBP_bac_3 - - 19041 3361 211.0 08771 298 -8.03
SBP_bac_3 - - 2798 3361 2838 06072 298 -85
OmpA - - 852 320 1254 09027 298 -3.13
DnaB - - 1074 3128 1421 11341 298 —-2.56
LysR_substrate - - 2473 338 2567 0.6908 298 -3.63
LysR_substrate - - 2396 338 2504 06472 298 —2.00
Methyltransf_5 - - 600 375 1105 1.0656 298 -41.36
Methyltransf_5 - - 86.1 375 1351 1.1214 298 -11.48
SH3_1 0.865 0.1583 106.7 344 1474 1.0253 295 -3.76
ACBP 0.825 0.1169 919 3244 1317 11281 278 -6.72
PDZ 0.931 02794 1407 31288 1685 1.0854 298 -1.81
Copper-bind 0.828 0.1781 94.6 359.3 1399 09709 298 -12.07

a Reflective correlation (r) and regression (kg Ts) coefficients for least-squares regression lines of experimental
AAGNp on Ay through the origin.
b Conformational entropy per residue, in kg units, in the denatured molten-globule state; w = (Ts/Ty)?6y?/(2L)

d Folding free energy in kcal/mol units; (AGnp (o, T))o/ (ks Ts) ~ oy?(F(on)) [T/ Tg) Ts/T = 1]




The values of T, estimated from the estimated T and experimental T,

satisfy the condition for protein folding, Ts < Tg < Tp,.
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Ts/ 'Arg is plotted against T, /7'9 for each protein domain. A dotted curve corresponds to the
condition of (AGnp (N, Tm)o = 0, Ts/ Ty = 2(Tn/ Tg)/((Trm/ Ty)? + 1).



The values of (AGnp(o, T))o estimated from the estimated Ts and experimental

Tm almost agree with their experimental values.

0 |
4 +
i [ . !
J ‘
E 5
=
3 |
~ i W
© N
A | .
S
<
v
= -10
’«m
i M ’ + T =84
15 — :
-15 -10 5 0

experimental AG,,  (kcal/mol)

Folding free energies, (AGnp)o = ks Ts(A¥np)o, predicted by the present method are plotted
against their experimental values, AGnp(oy).



4-4. The equilibrium state of evolutionary statistical energy v in the

mutation—fixation process of amino acid substitutions

@ Monoclonal approximation for the fixation process of amino acid substitutions:
Protein evolution is assumed to proceed with a single amino acid substitution fixed at a time in a
population.

Equilibrium condition for Aynp and y:

(AAYNDfived = (An)ies =0 & Aynp and gy are at equilibrium. (50)

The PDF of AAyp in fixed mutants is proportional to that multiplied by the fixation probability.

_ _ u(s(AAynp))
P(AAYNDfixed) = p(AAIl/ND)—<U(S(AAlﬁND))> (51)
Ws(Bumo)) = [ u(s(ABUNO))P(AAUN)IA AN (52)
The selective advantage of u to wildtype is represented as follows for f(w) = f(u) = f(c).

ANes(w — p)(1 = Gm) = (4Nem (1) — 4Nem(w))(1 - gm) (53)
= —(Ayno(pn, T) = Aynp(w, T)) = —(Un(p) — ¥n(w)) (54)

= —(AGnp(p, T) - AGno(W, T))/(keTs) = —(Gn(u) — Gn(w))/ (ke Ts) (55)



4-5. The observed frequency distribution of Ay can be well approximated by a

log-normal distribution.

vl b b b b b b b e
E —— Observed E
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The observed frequency distribution and the fitted distributions of Ay in the PDZ protein
family. Only representatives of unique sequences with no deletions, which are at least 20% different
from each other, are employed; the total count is equal to 222,466 over 335 homologous sequences.



Approximation of the observed frequency distribution of Ay with a log-normal

The equilibrium condition is calculated by approximating the probability density of Ay with a
log-normal distribution.

p(Ayn) =~ InN(X;u,0)= 1;N(In X; [, o) (56)

x = max(Ayy - AyR,0) (57)

exp(u+0?/2) = Agn-DyR (58)

exp(2u + o) (exp(0®) = 1) = (Ayn - Ayn)?) (59)
AyY = min(Ayn - ngpift(Awn — Ayy)?)'2,0) (60)

where Al//g is the origin for the log-normal distribution and the shifting factor ngp;s; is taken to be equal
to 2, unless specified. The parameters for a log-normal distribution are determined by employing the
regression line of Ay on ¥y and Sd(Ayy) observed in respective protein families.

WN(O'N)—‘ﬁN(O'N)
L

1/2 1/2

(Bl ol — o)~ Dol o] = ) (62)

Ayny ~  ay, +Dyn(o, ol = o) withay, <0 (61)

(Ayn - Ayy)?

Q



4-6. Evolutionary statistical energy v in the mutation—fixation process of amino
acid substitutions has a stable equilibrium value, because Ay and therefore

(AYnN)iixed are decreasing functions of ¥ /L.
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The average of Ayn(~ AAynp) over fixed single nucleotide nonsynonymous mutations versus
Ywn/L of a wildtype for the PDZ protein family.



4-7. The equilibrium value of ¢y almost agrees with the sample average of yy over

all homologous sequences.
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The equilibrium value of /L, where (Ayn)iixeda = 0, is plotted against the average of /L over
homologous sequences for each protein family.



4-8. The relationship between the standard deviation and the mean of Ay at the

equilibrium state of ¥
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Relationship between the mean and the standard deviation of Ay due to single nucleotide
nonsvnonvmous mutations at eauilibrium. (AU dsvay = O



The relationship between T and the mean of Ay at the equilibrium state of ¥y
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4-9. Probability distributions of selective advantage, fixation rate, and K3 /Ks

Let us consider the PDFs of characteristic quantities that describe the evolution of genes.
@ The PDF of 4N,s:

dAAYND
d4Ngs
where AAynp must be regarded as a function of 4N,s, that is, AAynp = —4Ns(1 — gm); see
Eq. 21.
@ The PDF of fixation probability u:

P(4Nes) = p(AAYnp)|l————| = P(AAYND)(1 — m) (63)

4N, 2 44N, m—1
d4;\les — p(4N,s) (e*Nes — 1)2g4Nes(an=1)
u qm(e4Nes _ 1) _ (e4Nesqm _ 1)
where 4N,s must be regarded as a function of u.
@ The ratio of the nonsynonymous substitution rate per nonsynonymous site (K;) with selective
advantage s to the substitution rate per synonymous site (Ks) with s = 0

K, u(s) u(s) du

Ks U(O) qm p( a/ S) p( )d(Ka/Ks) p( )qm ( )
assuming that synonymous substitutions are completely neutral and mutation rates at both types
of sites are the same.

p(u) = p(4Nes) (64)



Probability distributions of AAynp, 4Nes, u, and K;/Ks in fixed mutant genes

The PDF of AAy\p in fixed mutants is proportional to that multiplied by the fixation probability.

_ U(S(AAI&ND))
p(AAl//ND,fixed) - p(AA'J/ND)m (66)
Ws(admo)) = [ u(s(2BUn0))P(AAUNG)IA NI (67)
Likewise, the PDF of selective advantage in fixed mutants is
_u(s)
4N Stixe = 4N,s 68
and those of the u and K,/K; in fixed mutants are
u
ixel - N 69
p(Uixed) IO(U)<u> (69)
Ka _ Ka _ Ka Ks
P((K)fixed) = p( K. ) o =p(— K. ) <%> (70)

The average of K, /K in fixed mutants is equal to the ratio of the second moment to the first moment of
Ka/Ks in all arising mutants; (K, /Ks)fixes = ((Ka/Ks)?)/{Ka/Ks)-



4-10. PDFs of Ayn and K /Ks as a function of Ay
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4-11. The probability of neutral (0.95 < K;/Ks < 1.05) selection category is

insignificant in fixed mutations.

4
3

In all single nucleotide mutations
— Ka/Ks <0.5
--- 0.5 <Ka/Ks < 0.95
<+ 0.95 <Ka/Ks < 1.05
— 1.05 < Ka/Ks

In fixed mutations

Ka/Ks < 0.5
--- 0.5 <Ka/Ks < 0.95

++ 095 <Ka/Ks < 1.05
— 1.05 < Ka/Ks
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The probabilities of each selection category in all single nucleotide nonsynonymous mutations
and in their fixed mutations as a function of Ay at equilibrium, (A )sixea = 0.




(Ka/Ks) < 1 in arising mutations, although (K;/Ks)ixed > 1 in fixed mutations.
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The averages of K,/Ks over all single nucleotide nonsynonymous mutations and over their
fixed mutations as a function of Ay at equilibrium, (A )sixea = O.




4-12. (K3/Ks) as a function of Ts at the equilibrium state of ¥y
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The averages of K,/Ks over all single nucleotide nonsynonymous mutations and over their
fixed mutations as a function of the effective temperature of selection,
TS(: (TSSd(AIﬁN))PDz/Sd(AlﬂN)), at equilibrium, <AwN>ﬁxed =0.



@ A Boltzmann distribution with protein fitness is derived under the assumption that amino acid
substitutions are at equilibrium in a reversible Markov process.

@ Relationships are obtained for folding free energy, folding statistical energy and fitness.

@ Selective temperature, and then, glass transition temperature and folding free energy are
estimated for 14 protein domains with the estimated T, and experimental T,,. Their estimated
values fall in a reasonable range.

@ The equilibrium value of ¥y at (Ayn)ied = 0 well agrees with the mean of y over all the
homologous sequences in each protein family, indicating the consistency of the present theory.

@ Selective temperature is directly related to substitution rate (K, /Ks).
@ Protein stability and foldability are kept in a balance of positive selection and random drift.

@ Positive and negative mutations are significantly fixed in stability/foldability selection, supporting
the nearly neutral theory rather than the neutral theory for protein evolution.



