The Journal of Chemical Physics, 08 January 2005
J. Chem. Phys. 122, 024901 (2005) (18 pages)
©2005 American Institute of Physics. All rights reserved.
Previous section: FIGURES
Next section: FOOTNOTES
Title Page

TABLES

Table I. Orientational entropy, <–ln faa[prime]>, in kB units for each residue pair (a,a[prime]); a (a[prime]) is shown in each row (column), r is for all types of residues, and the parameters used are l<sub><i>p</i></sub><sup>max</sup> = l<sub><i>e</i></sub><sup>max</sup> = k<sub><i>e</i></sub><sup>max</sup> = 6, Ocutoff = 1792, beta= 0.2, and ccutoff = 0.025.
 C M F I L V W Y A G T S Q N E D H R K P r
C 3.97 4.06 4.52 4.31 4.54 4.33 3.62 4.33 4.38 4.74 4.40 4.43 4.02 4.25 3.96 4.00 3.96 4.26 4.01 4.50 5.12
M 4.07 4.47 4.69 4.44 4.58 4.45 4.23 4.64 4.50 4.88 4.48 4.57 4.24 4.42 4.15 4.16 4.21 4.35 4.04 4.78 4.97
F 4.51 4.71 4.92 4.73 4.88 4.68 4.55 4.86 4.84 5.09 4.82 4.83 4.51 4.82 4.60 4.60 4.60 4.67 4.50 4.90 5.16
I 4.31 4.45 4.72 4.38 4.52 4.34 4.42 4.66 4.36 4.91 4.47 4.57 4.27 4.47 4.13 4.27 4.34 4.44 4.10 4.82 4.77
L 4.53 4.57 4.88 4.52 4.68 4.55 4.60 4.78 4.43 5.01 4.62 4.64 4.35 4.65 4.20 4.41 4.68 4.56 4.28 5.06 4.86
V 4.31 4.46 4.69 4.33 4.55 4.21 4.53 4.65 4.33 4.90 4.44 4.55 4.43 4.60 4.22 4.28 4.43 4.48 4.16 4.80 4.78
W 3.59 4.23 4.53 4.43 4.59 4.53 3.87 4.46 4.78 4.79 4.46 4.51 4.06 4.27 4.29 4.40 4.09 4.28 4.01 4.56 5.21
Y 4.34 4.61 4.85 4.63 4.74 4.62 4.44 4.87 4.85 5.11 4.78 4.80 4.46 4.86 4.76 4.91 4.71 4.66 4.38 4.88 5.23
A 4.34 4.50 4.85 4.33 4.42 4.29 4.76 4.85 3.76 4.88 4.46 4.45 4.37 4.52 4.10 4.05 4.60 4.53 4.20 4.96 4.78
G 4.70 4.88 5.12 4.89 4.98 4.88 4.84 5.13 4.88 5.47 5.12 5.31 5.00 5.30 4.90 4.95 5.06 5.22 4.97 5.35 5.61
T 4.37 4.46 4.82 4.44 4.62 4.44 4.44 4.80 4.46 5.13 4.23 4.54 4.19 4.63 3.95 4.16 4.52 4.62 4.16 4.91 4.95
S 4.42 4.56 4.87 4.56 4.62 4.54 4.50 4.82 4.41 5.30 4.54 4.67 4.42 4.78 4.24 4.33 4.59 4.76 4.48 4.98 5.09
Q 4.02 4.20 4.51 4.21 4.31 4.38 4.07 4.47 4.36 5.02 4.19 4.39 4.15 4.39 3.84 4.03 4.32 4.27 3.91 4.72 4.86
N 4.23 4.41 4.84 4.48 4.61 4.58 4.30 4.85 4.52 5.28 4.65 4.77 4.39 4.84 4.28 4.45 4.59 4.71 4.36 4.97 5.22
E 3.96 4.12 4.59 4.12 4.19 4.18 4.29 4.81 4.10 4.93 3.95 4.22 3.81 4.29 3.72 3.83 4.58 4.39 4.06 4.54 4.71
D 3.96 4.14 4.61 4.24 4.38 4.28 4.42 4.95 4.06 4.95 4.14 4.32 4.03 4.44 3.83 4.13 4.71 4.85 4.46 4.67 4.95
H 3.98 4.20 4.58 4.33 4.66 4.43 4.09 4.73 4.60 5.07 4.51 4.53 4.30 4.60 4.58 4.71 4.40 4.44 4.18 4.63 5.27
R 4.26 4.36 4.68 4.42 4.55 4.46 4.31 4.72 4.54 5.25 4.63 4.75 4.27 4.73 4.37 4.87 4.47 4.66 4.05 4.88 5.08
K 3.97 4.06 4.51 4.09 4.26 4.15 3.99 4.42 4.22 5.00 4.19 4.49 3.94 4.38 4.06 4.48 4.18 4.07 3.85 4.53 4.81
P 4.47 4.76 4.94 4.80 5.06 4.79 4.59 4.91 4.97 5.35 4.89 4.96 4.76 5.00 4.58 4.66 4.68 4.89 4.54 5.19 5.48
r 5.11 4.97 5.15 4.77 4.86 4.77 5.21 5.24 4.78 5.61 4.96 5.09 4.88 5.23 4.72 4.96 5.26 5.08 4.81 5.48 5.18
First citation in article

Table II. Dependencies of the performance of fold recognition on the resolution of the orientational potential; dependencies on polar or Euler angles.
(a) Dependencies on polar angles
l<sub><i>p</i></sub><sup>cutoff</sup> ccutoff l<sub><i>e</i></sub><sup>max</sup> = k<sub><i>e</i></sub><sup>max</sup> = 0, beta= 0.2, Ocutoff = [infinity]
79 monomeric decoy sets 81 Ig decoy sets
No. of tops  overline(ln <i>P</i><sub><i>e</i></sub>)  overline(ln <i>P</i><sub><i>r</i></sub>)  overline(<i>Z</i><sub><i>e</i></sub>) No. of tops  overline(ln <i>P</i><sub><i>e</i></sub>)  overline(ln <i>P</i><sub><i>r</i></sub>)  overline(<i>Z</i><sub><i>e</i></sub>)
  4 0.0 23 –2.79 –2.09 –1.41 29 –2.66 –1.88 –1.45
 0.025 22 –2.77 –2.02 –1.41 28 –2.67 –1.82 –1.45
  5 0.0 31 –3.35 –2.57 –1.84 31 –2.68 –1.96 –1.46
 0.025 31 –3.37 –2.57 –1.84 30 –2.66 –1.93 –1.45
  6 0.0 27 –3.23 –2.55 –1.77 34 –2.69 –2.19 –1.45
 0.025 28 –3.24 –2.58 –1.76 34 –2.68 –2.16 –1.44
  7 0.0 30 –3.45 –2.60 –1.98 45 –2.93 –2.52 –1.57
 0.025 31 –3.46 –2.60 –1.98 45 –2.94 –2.53 –1.58
  8 0.0 28 –3.37 –2.59 –1.91 38 –2.73 –2.24 –1.48
 0.025 27 –3.36 –2.55 –1.89 39 –2.74 –2.27 –1.49
  9 0.0 25 –3.38 –2.43 –1.92 32 –2.66 –2.06 –1.54
 0.025 24 –3.36 –2.44 –1.90 33 –2.68 –2.08 –1.56
10 0.0 27 –3.32 –2.55 –1.83 37 –2.55 –2.13 –1.52
 0.025 26 –3.31 –2.49 –1.82 36 –2.52 –2.14 –1.55
11 0.0 28 –3.44 –2.67 –1.94 39 –2.68 –2.16 –1.71
 0.025 30 –3.48 –2.82 –1.92 39 –2.67 –2.18 –1.72
12 0.0 25 –3.29 –2.45 –1.78 41 –2.70 –2.29 –1.76
 0.025 24 –3.30 –2.50 –1.77 40 –2.70 –2.29 –1.77
13 0.0 30 –3.39 –2.73 –1.80 39 –2.80 –2.19 –1.83
 0.025 29 –3.38 –2.73 –1.80 40 –2.80 –2.20 –1.83
14 0.0 31 –3.42 –2.89 –1.84 46 –2.87 –2.48 –1.91
 0.025 30 –3.44 –2.82 –1.82 47 –2.89 –2.53 –1.89
(b) Dependencies on Euler angles
l<sub><i>e</i></sub><sup>max</sup>
k<sub><i>e</i></sub><sup>max</sup>
ccutoff l<sub><i>p</i></sub><sup>max</sup> = 0, beta= 0.2, Ocutoff = [infinity]
79 monomeric decoy sets 81 Ig decoy sets
No. of tops  overline(ln <i>P</i><sub><i>e</i></sub>)  overline(ln <i>P</i><sub><i>r</i></sub>)  overline(<i>Z</i><sub><i>e</i></sub>) No. of tops  overline(ln <i>P</i><sub><i>e</i></sub>)  overline(ln <i>P</i><sub><i>r</i></sub>)  overline(<i>Z</i><sub><i>e</i></sub>)
4 0.0 25 –3.18 –2.68 –1.78 33 –2.63 –2.26 –1.31
 0.025 25 –3.14 –2.71 –1.75 33 –2.61 –2.31 –1.29
5 0.0 25 –3.26 –2.79 –1.77 44 –2.85 –2.55 –1.65
 0.025 26 –3.23 –2.80 –1.74 44 –2.84 –2.58 –1.61
6 0.0 26 –3.25 –2.79 –1.83 47 –3.04 –2.78 –1.84
 0.025 24 –3.20 –2.57 –1.81 45 –3.00 –2.79 –1.77
7 0.0 30 –3.31 –2.84 –1.88 52 –3.03 –2.94 –1.82
 0.025 28 –3.24 –2.70 –1.83 52 –3.02 –2.92 –1.73
First citation in article

Table III. Dependencies of the performance of fold recognition on the resolution of the orientational potential; interdependencies between polar and Euler angles.
(a) Dependencies on lmax and cutoff Ocutoff
l<sub><i>p</i></sub><sup>max</sup> Ocutoff l<sub><i>e</i></sub><sup>max</sup> = k<sub><i>e</i></sub><sup>max</sup> = l<sub><i>p</i></sub><sup>max</sup>, beta= 0.2, ccutoff = 0.025
79 monomeric decoy sets 81 Ig decoy sets
No. of tops  overline(ln <i>P</i><sub><i>e</i></sub>)  overline(ln <i>P</i><sub><i>r</i></sub>)  overline(<i>Z</i><sub><i>e</i></sub>) No. of tops  overline(ln <i>P</i><sub><i>e</i></sub>)  overline(ln <i>P</i><sub><i>r</i></sub>)  overline(<i>Z</i><sub><i>e</i></sub>)
4 960 34 –3.72 –3.24 –2.18 47 –2.97 –2.81 –1.59
 1792 36 –3.77 –3.27 –2.21 47 –3.01 –2.79 –1.67
5 960 36 –3.82 –3.38 –2.27 56 –3.18 –3.02 –1.81
 1792 38 –3.87 –3.22 –2.33 55 –3.23 –2.92 –1.96
6 960 37 –3.83 –3.33 –2.32 60 –3.24 –3.23 –1.92
 1792 37 –3.88 –3.22 –2.38 59 –3.27 –3.11 –2.00
 2025 38 –3.85 –3.25 –2.36 56 –3.21 –3.05 –1.99
7 64 27 –3.53 –2.95 –1.93 30 –2.63 –2.04 –1.46
 960 36 –3.85 –3.22 –2.34 57 –3.22 –3.11 –1.93
 1792 38 –3.91 –3.31 –2.42 53 –3.20 –2.94 –2.02
 2025 37 –3.87 –3.29 –2.40 54 –3.20 –3.02 –2.04
(b) Dependencies on cutoff ccutoff
  l<sub><i>e</i></sub><sup>max</sup> = k<sub><i>e</i></sub><sup>max</sup> = l<sub><i>p</i></sub><sup>max</sup>, beta= 0.2, Ocutoff = 960
l<sub><i>p</i></sub><sup>max</sup> ccutoff 79 monomeric decoy sets 81 Ig decoy sets
No. of tops  overline(ln <i>P</i><sub><i>e</i></sub>)  overline(ln <i>P</i><sub><i>r</i></sub>)  overline(<i>Z</i><sub><i>e</i></sub>) No. of tops  overline(ln <i>P</i><sub><i>e</i></sub>)  overline(ln <i>P</i><sub><i>r</i></sub>)  overline(<i>Z</i><sub><i>e</i></sub>)
5 0.0 35 –3.81 –3.33 –2.27 55 –3.17 –2.96 –1.83
 0.025 36 –3.82 –3.38 –2.27 56 –3.18 –3.02 –1.81
6 0.0 34 –3.80 –3.24 –2.32 60 –3.26 –3.25 –1.95
 0.025 37 –3.83 –3.33 –2.32 60 –3.24 –3.23 –1.92
7 0.0 34 –3.82 –3.11 –2.33 59 –3.25 –3.17 –1.96
 0.025 36 –3.85 –3.22 –2.34 57 –3.22 –3.11 –1.93
l<sub><i>p</i></sub><sup>max</sup> ccutoff l<sub><i>e</i></sub><sup>max</sup> = k<sub><i>e</i></sub><sup>max</sup> = l<sub><i>p</i></sub><sup>max</sup>, beta= 0.2, Ocutoff = 1792
5 0.0 38 –3.88 –3.30 –2.34 56 –3.23 –2.93 –1.96
 0.025 38 –3.87 –3.22 –2.33 55 –3.23 –2.92 –1.96
6 0.0 37 –3.87 –3.35 –2.40 60 –3.28 –3.14 –2.01
 0.025 37 –3.88 –3.22 –2.38 59 –3.27 –3.11 –2.00
7 0.0 39 –3.92 –3.27 –2.43 55 –3.20 –3.05 –2.05
 0.025 38 –3.91 –3.31 –2.42 53 –3.20 –2.94 –2.02
(c) Dependencies on a parameter for small sample correction, beta
  l<sub><i>p</i></sub><sup>max</sup> = l<sub><i>e</i></sub><sup>max</sup> = k<sub><i>e</i></sub><sup>max</sup> = 6, ccutoff = 0.025
Ocutoff beta 79 monomeric decoy sets 81 Ig decoy sets
No. of tops  overline(ln <i>P</i><sub><i>e</i></sub>)  overline(ln <i>P</i><sub><i>r</i></sub>)  overline(<i>Z</i><sub><i>e</i></sub>) No. of tops  overline(ln <i>P</i><sub><i>e</i></sub>)  overline(ln <i>P</i><sub><i>r</i></sub>)  overline(<i>Z</i><sub><i>e</i></sub>)
960 0.1 35 –3.82 –3.26 –2.32 60 –3.25 –3.23 –1.93
 0.2 37 –3.83 –3.33 –2.32 60 –3.24 –3.23 –1.92
 1 34 –3.78 –3.23 –2.28 58 –3.22 –3.19 –1.89
1792 0.1 36 –3.86 –3.15 –2.39 59 –3.27 –3.11 –2.00
 0.2 37 –3.88 –3.22 –2.38 59 –3.27 –3.11 –2.00
 1 36 –3.85 –3.18 –2.34 57 –3.24 –3.05 –1.97
First citation in article

Table IV. Performance of each potential component in fold recognition.
  (a) For the 79 monomeric decoy sets  
Potentialsa No. of top ranks Mean Mean Mean Mean Median Median Mean
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup>  Deltae<sub><i>i</i><i>j</i></sub><sup><i>c</i></sup>  eo  er  es Total No. = 79  overline(ln <i>P</i><sub><i>e</i></sub>)  overline(ln <i>P</i><sub><i>r</i></sub>)  overline(<i>Z</i><sub><i>e</i></sub>)  overline(<i>Z</i><sub>rmsd</sub>) Ze Zrmsd  overline(<i>R</i>)b
    eo     37 –3.88 –3.22 –2.38 –2.49 –2.09 –1.65 0.33
    eo + er   35 –3.79 –3.08 –2.32 –2.33 –2.01 –1.49 0.33
    eo +   es 53 –4.00 –3.99 –2.96 –3.13 –3.22 –2.59 0.35
    eo + er + es 53 –3.98 –3.99 –2.93 –3.13 –3.16 –2.59 0.34
  Deltaec       36 –4.12 –3.20 –2.56 –2.12 –2.37 –1.63 0.33
  Deltaec +   er   41 –3.90 –3.12 –2.23 –2.03 –2.04 –1.74 0.32
  Deltaec + eo     52 –4.53 –4.24 –3.18 –3.19 –2.79 –2.60 0.37
  Deltaec + eo + er   52 –4.38 –4.04 –2.95 –3.01 –2.54 –2.50 0.37
  Deltaec + eo +   es 58 –4.25 –4.30 –3.51 –3.38 –3.48 –3.04 0.37
  Deltaec + eo + er + es 57 –4.15 –4.24 –3.35 –3.35 –3.17 –2.80 0.37
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec       36 –4.05 –3.29 –2.68 –2.32 –2.61 –1.86 0.32
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec +   er   38 –4.18 –3.50 –2.53 –2.50 –2.49 –2.14 0.32
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo     58 –4.79 –4.88 –4.38 –3.92 –4.08 –3.55 0.40
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo + er   57 –4.73 –4.69 –4.13 –3.74 –3.76 –3.41 0.40
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo +   es 61 –4.63 –4.63 –4.45 –3.68 –4.11 –3.41 0.39
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo + er + es 59 –4.49 –4.49 –4.21 –3.56 –3.86 –3.10 0.39
(b) For the 81 immunogloblin decoy sets
Potentialsa No. of top ranks Mean Mean Mean Mean Median Median Mean
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup>  Deltae<sub><i>i</i><i>j</i></sub><sup><i>c</i></sup>  eo  er  es Total No. = 81  overline(ln <i>P</i><sub><i>e</i></sub>)  overline(ln <i>P</i><sub><i>r</i></sub>)  overline(<i>Z</i><sub><i>e</i></sub>)  overline(<i>Z</i><sub>rmsd</sub>) Ze Zrmsd  overline(<i>R</i>)b
    eo     59 –3.27 –3.11 –2.00 –2.74 –2.03 –2.55 0.38
    eo + er   62 –3.35 –3.23 –2.15 –2.85 –2.27 –2.61 0.36
    eo +   es 67 –3.36 –3.42 –3.14 –3.00 –3.27 –2.69 0.39
    eo + er + es 68 –3.38 –3.46 –3.29 –3.03 –3.44 –2.71 0.37
  Deltaec       6 –1.55 –1.38 –0.52 –0.65 –0.51 –0.47 0.38
  Deltaec +   er   36 –2.78 –2.29 –1.02 –1.70 –0.95 –1.15 0.29
  Deltaec + eo     57 –3.20 –3.09 –1.57 –2.70 –1.55 –2.53 0.44
  Deltaec + eo + er   63 –3.39 –3.35 –1.82 –2.95 –1.79 –2.67 0.40
  Deltaec + eo +   es 68 –3.36 –3.50 –2.53 –3.09 –2.44 –2.69 0.43
  Deltaec + eo + er + es 69 –3.39 –3.52 –2.81 –3.09 –2.81 –2.71 0.40
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec       0 –0.40 –1.33 0.54 –0.46 0.44 –0.49 0.35
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec +   er   0 –0.44 –1.29 0.35 –0.50 0.24 –0.49 0.32
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo     19 –2.11 –2.08 –0.86 –1.26 –0.89 –0.79 0.50
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo + er   44 –2.82 –2.81 –1.20 –2.22 –1.25 –2.13 0.48
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo +   es 55 –3.00 –3.10 –1.83 –2.63 –1.94 –2.53 0.49
e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo + er + es 61 –3.24 –3.31 –2.25 –2.82 –2.34 –2.61 0.46
a The orientational energies used above are calculated with l<sub><i>p</i></sub><sup>max</sup> = l<sub><i>e</i></sub><sup>max</sup> = k<sub><i>e</i></sub><sup>max</sup> = 6, Ocutoff = 1792, beta= 0.2, and ccutoff = 0.025.
b R is the correlation coefficient of rank order between the energies and RMSDs of decoys in a decoy set.
First citation in article

Table V. The performance of scoring functions for each family of protein decoy sets.
Decoy ID range, decoy family
potentials
No. of tops
/Total No.
Mean
 overline(ln <i>P</i><sub><i>e</i></sub>)
Mean
 overline(<i>Z</i><sub><i>e</i></sub>)
Mean
 overline(<i>R</i>)a
1-7 4state_reduced: seven decoy sets
   (e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo + es)b 7/7 –6.50 –4.44 0.66
Fain et al. (2002)c 1/7 –4.45 –2.3 0.52
Toby and Elber (2000)d 3/6 –5.42 –3.14  
Samudrala and Moult (1998)e 6/7 –6.06 –2.67 0.67
Onizuka et al. (2002)f 7/7 –6.50 –3.41  
Dominy and Brooks (2002)g ~7/7 ~–6.5 –3.4 0.55
8–11 fisa: four decoy sets
   (e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo + es)b 2/4 –4.04 –2.55 0.26
Toby and Elbner (2000)d 2/3  –3.34  
Onizuka et al. (2002)f 1/3  –1.38  
12–16 fisa_casp3: five decoy sets
   (e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo + es)b 2/5 –5.38 –3.61 0.16
Toby and Elber (2000)d 1/3  –3.94  
Onizuka et al. (2002)f 1/3  –2.01  
17–45 hg_structal: 29 decoy sets
   (e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo + es)b 22/29 –2.76 –2.62 0.72
Dominy and Brooks (2002)g 19/29  –2.0 0.69
46–53 lattice_ssfit: eight decoy sets
   (e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo + es)b 8/8 –7.60 –11.12 –0.01
Fain et al. (2002)c 8/8 –7.60 –6.84  
Toby and Elber (2000)d 4/6 –6.89 –4.10  
Samudrala and Moult (1998)e 8/8 –7.60 –6.46  
Onizuka et al. (2002)f 6/6 –7.60 –6.22  
54–63 lmds: ten decoy sets
   (e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo + es)b 8/10 –4.89 –5.34 0.14
Fain et al. (2002)c 3/9 –4.55 –2.83  
Toby and Elber (2000)d 4/7 –5.32 –3.27  
Samudrala and Moult (1998)e 3/9 –3.04 –0.58  
Onizuka et al. (2002)f 5/7 –5.00 –3.67  
64–73 lmds_v2: ten decoy sets
   (e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo + es)b 8/10 –3.85 –5.03 0.18
Fain et al. (2002)c 1/2 –4.81 –3.15  
Samudrala and Moult (1998)e 1/2 –4.47 –3.05  
74–79 semfold: six decoy sets
   (e<sub><i>r</i><i>r</i></sub><sup><i>c</i></sup> + Deltaec + eo + es)b 4/6 –8.13 –3.86 0.08
1–61 ig_structal: 61 dcoy sets
   (eo + er + es)b 49/61 –3.55 –2.96 0.36
62–81 ig_structal_hires: 20 decoy sets
   (eo + er + es)b 19/20 –2.86 –4.31 0.43
a R is the correlation coefficient of rank order between the energies and RMSDs of decoys in a decoy set.
b The present model; the orientational energies were calculated with l<sub><i>p</i></sub><sup>max</sup> = l<sub><i>e</i></sub><sup>max</sup> = k<sub><i>e</i></sub><sup>max</sup> = 6, Ocutoff = 1792, beta= 0.2, and ccutoff = 0.025.
c Reference 25.
d Reference 24.
e Reference 13; taken from Ref. 25.
f Reference 33; the distance-dependent angular potential named 3C326.
g Reference 18; generalized Born, Coulomb, nonpolar solvation, and van der Waals energy terms are included.
First citation in article


Previous section: FIGURES
Next section: FOOTNOTES
Title Page